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Motivation

- High-dimensional sequential learning with signature and kernel methods.

- The selection of an effective kernel is challenging and somewhat task-dependent.
When the training data consist of sequential data such as time series, these
challenges are magnified.

- The path signature transform has decisive advantages in capturing complex
interactions between multivariate data streams.
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This Work

- Introduce general signature kernels indexed by a weight function ϕ which
generalise the ordinary signature kernel.

- Interpret in many examples as an average of PDE solutions, and show how it can
be estimated computationally using suitable quadrature formulae.

- Articulate a novel connection between signature kernels and the notion of the
hyperbolic development of a path.

- Extend the analysis to derive closed-form formulae for expected signature kernels
involving Brownian motion. Evaluate the use of different general signature kernels
as a basis for non-parametric goodness-of-fit tests to Wiener measure on path
space.
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Weighted Signature Kernels



What is Signature?

- Suppose x : [a, b] → V is a stream of information/high dimensional (continuous)
times series defined on [a, b] taking values in V (e.g. V = Rd).

- The signature Sa,t(x) = ⊕∞
n=0S(n)

a,t (x) ∈ T ((V )) with

S(n)
a,t (x) =

∫
· · ·

∫
a<t1<···<tn<t

dxt1 ⊗ · · · ⊗ dxtn , for n≥ 1.

is the response of the exponential nonlinear system to the stream x :

dSa,t(x) = Sa,t(x)dxt , Sa,a(x) = 1.

- The signature provides the infinite graded sequence of statistics which identifies a
path in an essentially unique manner.
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Signature as Feature

The signature uniquely determines paths.

Theorem (Uniqueness of signature; HL10, Annals of Math.)
Assume x : [a, b] → V is a continuous path of bounded variation. Then the signature
Sa,b(x) determines x up to tree-like equivalence. Specially, the path x̄ : t → (t, xt) is
always uniquely determined by its signature Sa,b(x̄).

The terms of the signature factorially decay.

Theorem (Factorial Decay; LCL04.)
Assume x : [a, b] → V is a continuous path of bounded variation. Then for every
n ∈ N and every a ≤ s < t ≤ b, we have ∥S(n)

s,t (x)∥V ⊗n ≤ ωx (s,t)
n! .
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Regression on Signatures

Continuous functions of paths are approximately linear on signatures.

Theorem (Universal Nonlinearity; BDLLS20.)
Let V1([a, b]; V ) denote the space of continuous paths [a, b] → V of bounded
variation. Suppose K ⊂ V1([a, b]; V ) is compact and F : K → R is continuous. Then
for any ϵ > 0 there exists a truncation level N ∈ N such that for every x ∈ K we have∣∣∣∣∣∣F (x) −

N∑
i=0

∑
I∈{1,··· ,d}i

αISI
a,b(x)

∣∣∣∣∣∣ < ϵ.
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Signature Kernel Methods

- Overcomes bottlenecks of the signature features:
- computational complexity
- expressiveness

- Kernelization allows to simultaneously consider a rich set of non-linearities while
avoiding the combinatorial explosion in the computation of signatures.

- Theoretical guarantee of universality (the ability to approximate non-linear
functions) and characteristicness (the ability to characterize probability measures)
from stochastic analysis and the properties of the classical signature.

- Leverages modular tools from kernel learning: Kernel methods are well-established
tools in machine learning which are fundamental for classification, nonlinear
regression and outlier detection involving small or moderate-sized data sets.
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Weighted Signature Kernels
- Define the general/weighted signature kernel of two paths x and y by

Kϕ
s,t(x , y) := ⟨Sa,s(x),Sa,t(y)⟩ϕ :=

∞∑
k=0

ϕ(k)⟨S(k)
a,s (x), S(k)

a,t (y)⟩V ⊗k

- The signature kernel with ϕ ≡ 1 solves the partial differential equation
([SCFLY20])

∂2Ks,t(x , y)
∂s∂t = Ks,t(x , y)⟨ẋs , ẏt⟩

with boundary conditions Ka,·(x , y) ≡ K·,a(x , y) ≡ 1.

- Methods that allow for the efficient computation of general signature kernels with
a broad class of different weightings ϕ are introduced by Cass, Lyons, and Xu
(2023+). WSKs can be interpreted as an average of PDE solutions, and could be
computed via suitable quadrature rules.
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Kernel Learning: Signature Kernel Classification/Regression
- Kernelization in a nutshell: Given a set K, we want a feature map ψ : K → H

that injects elements of K into a Hilbert space H such that ψ provides sufficient
non-linearities so that linear functionals of ψ, x 7→ ⟨w , ψ(x)⟩H are expressive
enough to approximate a rich set of functions.

- Signature feature map ψ = S: continuous paths space (times series data space)
x ∈ K ⊂ V1([a, b]; V ) to the signature space as a subspace of a Hilbert space
H = Tϕ(V ).

- Gram Matrix G =
(
Kϕ(xi , xj)

)
xi ∈D

where D is a finite set of data given.
Computation cost |D|2.

- Low-rank matrix approximations G̃ = CW −1CT where
C =

(
Kϕ(xi , xj)

)
xi ∈D,xj ∈J

, W =
(
Kϕ(xi , xj)

)
xi ,xj ∈J

, and J is of size r , sampled
uniformly at random from D with r ≪ |D|. Computation cost O(|D|).
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Weighted Signature Kernels by Randomisation

- Condition on ϕ: The function ϕ : N ∪ {0} → R+ is such that the series∑
k∈N Ckϕ (k) (k!)−2 is summable for every C > 0.

- The Hamburger moment problem: find a probability measure µ on R such that

ϕ (k) =
∫
λkdµ (λ) for all k ∈ N∪ {0} .

Then, under some conditions on µ, able to justify the following identity

Kϕ
s,t(x , y) =

∞∑
k=0

∫
λk

〈
Sk

a,s (x) ,Sk
a,t (y)

〉
k

dµ (λ) =
∫

Ks,t (λx , y) dµ (λ) .
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Weighted Signature Kernels by Randomisation: Examples

- Factorial-WSK: The ϕ-signature kernel under ϕ(k) =
(

k
2

)
! satisfies

Kϕ
s,t(x , y) = Eπ

[
Ks,t

(
π1/2x , y

)]
= Eπ

[
Ks,t

(
x , π1/2y

)]
,

where π ∼ Exp(1) is an exponentially distributed random variable with intensity 1.

- Beta-WSK: The ϕ-signature kernel under ϕ(k) = Γ(m+1)Γ(k+1)
Γ(k+m+1) satisfies

Kϕ
s,t(x , y) = Eπ [Ks,t (πx , y)] = Eπ [Ks,t (x , πy)] ,

where π ∼ B(1,m) is a Beta-distributed random variable.
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Weighted Signature Kernels by Integral Transforms

- The trigonometric moment problem: find a measure µ on [0, 2π] such that

ϕ (k) =
∫ 2π

0
eikθdµ (θ) for k ∈ Z.

- The Integral Transforms: A class of integral transforms having the form

ϕ (u) =
∫

C
r (u, z) dµ (z) , with r (u, z) = g (z)αu ∈ C

where α ∈ R, µ a finite signed Borel measure. This class includes the Fourier-,
Laplace- and Mellin-Stieltjes transforms. Justify the following identity:

Kϕ
s,t(x , y) =

∫
C

Ks,t (g(z)αx , y)µ (dz) .
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Weighted Signature Kernels by Integral Transforms: Examples

- Fourier-Stieltjes transform: C = R, g (z) = e−2πiz , α = 1, i.e.

ϕ (u) = µ̂ (u) :=
∫
R

e−2πiuzµ (dz) ;

- Laplace-Stieltjes transform: C = (0,∞) , g (z) = e−z , α = 1, i.e.

ϕ (u) = µ̃ (u) :=
∫ ∞

0
e−uzµ (dz) ;

- Mellin-Stieltjes transform: C = (0,∞) , g (z) = z , α = 1, i.e.

ϕ (u) = µMel (u + 1) =
∫ ∞

0
zuµ (dz) , Re u > −1.
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Computing Weighted Signature Kernels

- Gaussian Quadrature Rule (e.g. [SM03]):∫
Ks,t (zx , y) w (z) dz ≈

n∑
k=0

wkKs,t (zkx , y) .

- For a general weight function w , suppose that P = {pn : n ∈ N ∪ {0}} is a system
of orthogonal polynomials w.r.t. the weight function w , that is deg (pn) = n and
⟨pn, pm⟩w =

∫
pmpnwdz = 0 for n ̸= m.

- The quadrature points zk , k = 0, 1, ..., n are the zeros of the polynomial pn+1, the
corresponding quadrature weights are

wk :=
∫

w (z)
n∏

i=0,i ̸=k

( z − zi
zk − zi

)2
dz .
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Expected Weighted Signature Kernels



Expected Weighted Signature Kernels

- Consider how ϕ-signature kernels can be combined with the notion of expected
signatures to compare the laws of two stochastic processes.

- Study the expected weighted signature kernels

Kϕ
s,t (W, µ) := ⟨EB∼W [S0,s (◦B)] ,EX∼µ [S0,t (X )]⟩ϕ ,

where W is Wiener measure, and the measure µ will typically discrete and
supported on bounded variation paths. E [S0,s (◦B)] denotes the expected
Stratonovich signature for Brownian motion B.

- An initial step: x is a fixed deterministic continuous path of bounded variation.

Kϕ
s,t (W, x) := ⟨EB∼W [S0,s (◦B)] ,S0,t (x)⟩ϕ ,
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Expected Weighted Signature Kernels: Closed-form Solution

Theorem (Cass, Lyons, X., 2023+)
Let ϕ(k) =

(
k
2

)
! for k ∈ N ∪ {0}. Suppose x : [0, 1] → V is any continuous path of

bounded variation, it holds that

Kϕ
s,t (W, x) := ⟨EB∼W [S0,s (◦B)] ,S0,t (x)⟩ϕ = cosh

(
ρ√

s/2x (t)
)
,

for all t ∈ [0, 1]. In this notation, ρλx (t) := dHd (o, σλx (t)) is the distance between
the hyperbolic development σλx (t) of the path λx (·) from ToHd onto the
d-dimensional hyperbolic space. Hd started at the base point o = (0, 0, ..., 1) ∈ Hd ,
and dHd : Hd × Hd → [0,∞) is the Riemannian distance on Hd .
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Expected Weighted Signature Kernels
- The representation:

cosh ρλx (t) = 1 +
∞∑

n=1
λ2n

∫
0<t1<···<t2n<t

⟨dxt1 , dxt2⟩ · · · ⟨dxt2n−1 , dxt2n⟩.

- For xt ∈ Rd , let xλ be the rescaling of x by λ. The ODE

dΓλx (t) = F (dxλ
t )Γλx (t), t ∈ [0, 1], with Γλx (0) = Id+1 (1)

has a unique solution, and furthermore the last entry Γλx
d+1,d+1(t) = cosh ρλx (t).

- If x is a piecewise linear path defined by the concatenation xv1 ∗ xv2 ∗ · · · ∗ xvn , i.e.
x is such that x ′

vi (t) = vi ∈ Rd for t ∈ (ti−1, ti). Then the solution to (1) is given
explicitly by the matrix product

Γλx (1) = A (vn,∆n, λ) A (vn−1,∆n−1, λ) · · · A (v1,∆1, λ) , (2)

where A (v ,∆, λ) := Id+1 + sinh (λ |v | ∆) M + (cosh (λ |v | ∆) − 1) M2,
∆i = ti − ti−1, and M = F (ṽ) with ṽ = v/|v |.
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Computing Expected Weighted Signature Kernels: Factorial

- In contrast to the earlier case on the ϕ-signature kernel of two paths, we need
only solve an ODE to calculate ⟨E [S (◦B)] ,S (x)⟩ϕ rather than a PDE.

- For general path x , the ODE is known, and is determined by given linear vector
fields. Any ODE solver such as Runge-Kutta could in principle be used to obtain
numerical solutions.

- For piecewise linear path x , the exact solution is given explicitly as a product of
matrices.
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The Original Kernel of Expected Signatures

Theorem (Cass, Lyons and X., 2023+)
Let ϕ ≡ 1. Then ∣∣∣∣∣∣E [

S (◦B)0,s

]∣∣∣∣∣∣2
ϕ

= 1
2πi

∮
C

z−1ez+s2d/(4z)dz

where the contour C is the unit circle in C traversed anticlockwise. Furthermore,

Kϕ
s,t (W, x) = 1

2πi

∮
C

z−1ezΓcs(z)x
d+1,d+1(t)dz

where cs(z) =
√

s/2z ∈ C and Γcs(z)x
d+1,d+1(t) is the last entry of the solution to ODE

(1).

19 / 40



Computing Expected Weighted Signature Kernels: Original
The efficient approximation of the Hankel-type contour integrals of the form

I = 1
2πi

∮
H

ez f (z)dz = 1
2πi

∫ +∞

−∞
eφ(θ)f (φ(θ))φ′(θ)dθ.

The approach is to approximate by

IN = −iN−1
N∑

k=1
ezk f (zk)wk = −

N∑
k=1

ck f (zk) (3)

on the finite interval [−π, π] with N points which are regularly spaced on the interval
and zk = φ(θk), wk = φ′(θk) and ck = iN−1ezk wk . Three classes of contours (see e.g.
[TWS06]):

- Parabolic contours φ(θ) = N(0.1309 − 0.1194θ2 + 0.2500iθ)
- Hyperbolic contours φ(θ) = 2.246N(1 − sin(1.1721 − 0.3443iθ))
- Cotangent contours φ(θ) = N(0.5017θ cot(0.6407θ) − 0.6122 + 0.2645iθ)

20 / 40



The Beta-Weighted Kernel of Expected Signatures and Computation

Let ϕ(k) = Γ(m+1)Γ(k+1)
Γ(k+m+1) . Then

Kϕ
s,t (W, x) = Γ(m + 1)

2πi

∮
C

z−(m+1)ez︸ ︷︷ ︸
(3) Contour approximation

 1√
2π

∫ +∞

−∞

(1) explicit solution︷ ︸︸ ︷
Γcs(ρ,z)x

d+1,d+1(t) e− ρ2
2 dρ︸ ︷︷ ︸

(2) Gaussian quadrature

 dz ,

where cs(ρ, z) = z−1ρ
√

s ∈ C.

More general weighted expected signature kernels, see Theorem 6.5 of [CLX23+].
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Characterise Laws of Stochastic Processes
- a measure of similarity of two laws on path space through the quantity

dϕ (W, µ) :=
∣∣∣∣∣∣EW [S (X )] − Eµ [S (X )]

∣∣∣∣∣∣
ϕ
,

which is seen to be a maximum mean discrepancy (MMD) distance between W
and µ.

- a measure of alignment of the two expected signatures of W and µ given by

cos∠ϕ (W, µ) :=

〈
EW [S (X )] ,Eµ [S (X )]

〉
ϕ

||EW [S (X )]||ϕ ||Eµ [S (X )]||ϕ
,

which can be interpreted as an analogue of the Pearson correlation coefficient for
measures on path space.

- Design goodness-of-fit tests: The ratio dϕ(W,µ∗)
dϕ(W,µ) < α < 1. By an appropriate

selection of the threshold α, one might decide whether µ resembles Wiener
measure or not.
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Applications of Weighted Signature Kernels



Multivariate Time Series Classification

- We employ our weighted signature kernels to several multivariate time series
classification problems on the UEA datasets available at
https://timeseriesclassification.com/.

- We use the support vector classifier (SVC), and compare the performance under
the same SVC settings (time series pre-processing, hyperparameter selection, etc.)
with the original signature kernel, factorially-weighted signature kernel and
Beta-weighted signature kernel (here, we use m = 1 for the Beta weights). The
only difference is the kernel we use in the SVC models.

- In Table 1, we show the performance of SVC with different kernels. As the results
show, the test accuracy of SVC with the factorially- or Beta-weighted signature
kernel are better than that of the original signature kernel for most of the datasets.
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Multivariate Time Series: ArticularyWordRecognition
An Electromagnetic Articulograph (EMA) is an apparatus used to measure the
movement of the tongue and lips during speech. The motion tracking using EMA is
registered by attaching small sensors on the surface of the articulators. Collected from
multiple native English speakers producing 25 words.
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Multivariate Time Series: BasicMotions
Performed four activities whilst wearing a smart watch. The watch collects 3D
accelerometer and a 3D gyroscope data. Four classes: standing, walking, running and
playing badminton.
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Multivariate Time Series: Cricket

Cricket requires an umpire to signal different events in the game to a distant scorer.
The signals are communicated with motions of the hands.
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Multivariate Time Series: Epilepsy
Data was generated with healthy participants simulating four different activities:
WALKING, RUNNING, SAWING, SEIZURE MIMICKING.
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Multivariate Time Series: ERing

Hand and finger gestures:
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Multivariate Time Series: FingerMovements
This dataset was recorded from a normal subject during a no-feedback session. The
subject sat in a normal chair, fingers in the standard typing position at the computer
keyboard. Brain-Computer Interface (BCI) detects upcoming finger movements and
predicts their laterality.
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Multivariate Time Series: SelfRegulationSCP1

Self-regulation of Slow Cortical Potentials. The data were taken from a healthy
subject. The subject was asked to move a cursor up and down on a computer screen,
while his cortical potentials were taken.
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Multivariate Time Series Classification
Table: Test set classification accuracy (in %) on UEA multivariate time series datasets

Datasets Without add-time operation With add-time operation
Original Factorial Beta(1) Original Factorial Beta(1)

ArticularyWordRecognition 81.3 80 79.7 94.3 92.3 93.3
BasicMotions 87.5 90 100 97.5 97.5 95
Cricket 62.5 58.3 75 84.7 81.9 83.3
Epilepsy 90.6 88.4 90.6 92 92 93.5
ERing 75.6 78.1 74.4 80 87.4 86.3
FingerMovements 44 47 45 49 51 57
Libras 48.9 50 57.2 66.1 65 68.3
NATOPS 73.9 73.3 78.9 90.6 88.3 91.7
RacketSports 69.1 68.4 67.1 78.9 78.3 79.6
SelfRegulationSCP1 50.5 50.5 51.5 70.3 71 68.6
UWaveGestureLibrary 74.1 73.4 76.9 71.9 70.3 70.6
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Discrete Measures on Brownian Paths

- We proved the existence of a unique optimal probability measure µ∗ supported on
X = {x1, · · · , xn} such that

µ∗ = arg min
µ∈Cn

∣∣∣∣∣∣E [
S (◦B)0,1

]
− Eµ

[
S (X )0,1

]∣∣∣∣∣∣2
ϕ
.

- Brownian Paths: We randomly sample n i.i.d. Brownian motion paths in Rd .
Each path sampled over the time interval [0, 1], on an equally-spaced partition
0 = t1 < t2 < · · · < tm = 1. Denote the resulting finite set piecewise linearly
interpolated Brownian sample paths as

S(n,m, d) = {Bi}n
i=1 with Bi = {Bi(tj) ∈ Rd}m

j=1.
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Discrete Measures on Brownian Paths

Figure: Boxplots of the factorially-weighted signature kernel. (a) The left panel shows the
distribution of the values of the alignment cos∠ϕ(µ∗,W) of the optimal measure and the
Wiener measure across 400 independent experiments. (b) The right panel shows the same for
the MMD distance dϕ(µ∗,W).
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Discrete Measures on Brownian Paths

Figure: The optimal measure under the original signature kernel
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Applications in Signal Processing
- The alignment and the similarity defined by the ϕ-signature kernel give us a way of

determining how large a given discrete measure is different to the Wiener measure.
A natural application of these methods in signal processing is to mitigate/detect
the (additive) contamination of white noise under different types of perturbation.

- The observed visibility = the astrophysical sky signals + thermal noise + RFI.

- Narrow-band RFI measure across antennas: The received signals are linear
superpositions of independent Brownian motions with a single-frequency
sinusoidal wave of a fixed amplitude.

X (j)
i (t) = B(j)

i (t) + ϵ sin(2πνt − ϕ
(j)
i ), j = 1, 2, · · · , d

- Short duration high energy bursts: Brownian signal undergoes a perturbation at a
uniformly distributed random time.

X (j)
i (t) = B(j)

i (t) + ϵ
√

(t − Ui)+, j = 1, 2, · · · , d
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Narrow-band RFI Contamination

Figure: The case for the factorially-weighted signature kernel.
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Narrow-band RFI Contamination

Figure: The case for the original signature kernel.
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Short Duration High Energy Bursts

Figure: The case for the factorially-weighted signature kernel.
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Short Duration High Energy Bursts

Figure: The case for the original signature kernel.
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Coupling with Deep Neural Networks



Coupling with Deep Neural Networks
- Deep signature models ([LM2023])

- Neural signature kernel (as limits of controlled ResNets, [CLS2023]).

- Functional input neural networks ([CST2023])
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Thanks!
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