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Background and Motivation

|
U"M
il

® | arge language models (LLMs) have exhibited remarkable advancements across
diverse domains.

® However, despite these accomplishments, the generalization ability of LLMs is not
fully understood.

® The black-box nature of these models has led researchers to explore basic

mathematical tasks as a means to gain insights into their generalization behaviors.



Examples

» For example, use n-digit addition (123+456 for n = 3) or multiplication
to train a model.

» Test on inputs with length no more than n as in-distribution (ID) test such
as 3/8+12 or 12+7/8

» Test on inputs with length greater than n as out-of-distribution (OOD) test
such as 9123+8456.
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fPerformance of LLMs on Arithmetic Tasks

Performance of arithmetic tasks among different prominent large language models (LLMs)
Including GPT-4, ChatGPT, GPT-3.5, Galactica, LLaMA, OPT, BLOOM, and GLM.

Model ACC RE
GPT-4 22.22%
EEE GPT-4 W ChatGPT EEE MathGLM ChatGPT 13.25%
y text-davinci-003 | 9.79%
_ text-davinci-002 | 4.08%
§eo Galactica-120b 7.97%
§ . Galactica-30b 7.02%
&‘3 LLaMA-65b 5.02%
20 OPT-175B 3.83%
BLOOM-176B 3.96%
MathGLM-10M  MathGLM-100M  MathGLM-500M  MathGLM-2B GLM-130B 3.06%

Figure 1: Accuracy scores across various LLMs like GPT-4 and ChatGPT, as well as a series of MathGLM-10M | 64.29% 97.96%

MathGLM models on the generated test dataset for the arithmetic tasks. Among the different model
scales, MathGLM consistently achieves superior performance.

MathGLM-100M | 73.47% 98.23%
MathGLM-500M | 89.80% 98.82%
MathGLM-2B 94.90% 98.98%

Overall performance comparison on various LLMs in term of Accuracy.

Source: Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z., Guo, Y., ... & Tang, J. (2023). GPT can solve
mathematical problems without a calculator. arXiv preprint arXiv:2309.03241. °



Our Study
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® Observations have revealed a distinct difference between 1D generalization,

where models perform well on familiar inputs, and OOD generalization, where
they struggle with longer, unseen cases.

® The paper explores this generalization problem in more depth, focusing on the
performance drop observed when models are tested on OOD domain.
® Explore the generalization gap by investigating the mechanistic perspectives

behind these behaviors, and using small-scale models to uncover insights that
could apply to LLMs.



Main Contributions
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® Showcasing the power of mechanistic empirical evaluation for LLM
generalization: We train small generative language models (e.g., NanoGPT,
MInGPT) on arithmetic tasks to directly investigate ID vs. OOD generalization.

® Discovering learned structure for OOD generalization: The discernible algebraic
structure and the equivalence generalization would hopefully guide robust essential
solutions for strong OOD generalization.

® Understanding the role of representations in generalization: We show that
representation learning enables strong ID performance, while unanticipated
extension of representations to OOD inputs leads to systematic errors.
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Experiments and Results



Model Details
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We employ the model framework of GPT. We train several small-scale models, namely

NanoGPT and MIinGPT (Karpathy, mingpt), from random initialization using character-
level tokenization and the conventional next-token prediction objective.

Hyperparameter Addition Multiplication
num layer 3 6
num head 3 6
dim embd 48 192

vocab size 10 10
context window 15 19
dropout prob 0.1 0.1
optimizer AdamW AdamW
learning rate 0.0005 0.0005
betas (0.9, 0.95) (0.9, 0.95)
weight decay 0.1 0.1
grad norm clip 1.0 1.0
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Data Details
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The dataset is structured as a concatenation of operand pairs in a natural order, with
the reversed order of the operation results and padding before a, b, c.

araiaog + brb1bg = cocicrcy
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Generalization: Phenomenon
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When training on n-digit, models generalize successfully on unseen n-digit inputs (in-
distribution generalization), but fail miserably and mysteriously on longer, unseen

cases (out-of-distribution generalization).
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Generalization: Phenomenon

Operands Output Result  Correct Result

349 + 705 1,054 1,054
1,349 + 2,705 1,054 4,054

128 x 256 32,768 32,768
3,128 x 4,256 32,768 13,312,768

Table 2: Examples on models’ outputs for addition and multiplica-
tion.
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éeralization: Algebraic Structure

The models learn a function 7: 2,U %, U 2; — . (training, ID test, OOD test domains)
The models map unseen OOD inputs to outputs with equivalence relations in the ID domain.
Equivalence Classes: [(a,b)], := {(x,y) € N*| x=a(mod p), y = b(mod p)}
7:=7,xZ,={[(a,b),| (a,b) eEN*} Z,=7/pL
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falization: Algebraic Structure

Robustness: Different model scales and data sizes

v 1.0

L)

o

= 0.8 :

- .

o :

v :

06 3

"5 bl — gpt-nano, 20k
8 0.4 3 ——— gpt-micro, 20k
4 —— gpt-mini, 20k
>o02 o=y gpt-nano, 50k
g ----- gpt-micro, 50k
I -+ O LEL L gpt-mini, 50k
£ 0.0

20 25 30 35 40 45 50 55 6.0
# Iterations (logig)

Figure 5: The accuracy of OOD test on equivalence for different
model and data scales




Generalization: Algebraic Structure

Robustness
« Encoding method
« Scope of the dataset and training scheme

Versions ID 00D
Vi : rightmost digit be 0 100% 0
V,: tens digit be 0 100% 0
V3: non-reverse encoding 100% 0
V4: extended OOD 100% 0

Table 3: The accuracy of ID test and OOD test in different addition
variations.

Kaabnp ::{(xay) GNZ |XE I.%J'pa Y= I_%Jp} (1)

[(a,b)]p :={(x,y) EN? [x= | 1§ ] - 10p+a mod p, o)
y= L%J -10p+b mod p}.
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Analysis on Probability and
Representation



Generalization: Probability
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Figure 3: The probability distribution of each digit of the sequence in an addition operation ¢ = a 4 b. The left side of the black
dashed line represents the input a + b, while the right side is the result c. Figure 3(a) and Figure 3(e) represent the 349 + 705
and 128 + 256, and the outputs are 1,054 and 384 (450100 and 483000 in actual sequence output), respectively. In the second
column, we perturb the thousands digit of a: Figure 3(b) represents 1,349 4705, and Figure 3(f) represents 3, 128 + 256. In the
third column, we perturb the thousands digit of b: Figure 3(c) represents 349 + 2,705, and Figure 3(g) represents 128 4 4,256.
In the fourth column, we simultaneously perturb the thousands digit of « and b: Figure 3(d) represents 1,349 + 2,705, and
Figure 3(h) represents 3,128 4-4,256.
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Generalization: Representation
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The representations gradually transition from disorderly to structured throughout the learning
process. Initially, the representations appear random with colors mixed together. However, as the
training progresses, the structure of the learned representations becomes increasingly refined,
ultimately leading to a well-learned representation where each color is separated according to its

true label.
(a) (b) (c) (d)

Lo
O 2N O N Moo
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the learning process: random initialization - well-trained model 19
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Further Research
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Discussion
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® Our study focused exclusively on arithmetic tasks, such as n-digit addition and multiplication
problems.

® Defining ID and OOD domains for natural language is challenging.
® Equivalence relations allow the models to map inputs based on shared characteristics or

properties and thus plays a key role in the generalization behaviors observed in arithmetic.

However, much more efforts may be needed to establish clear-cut equivalence relations in
NLP tasks.
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Extend to Other Mysterious Phenomena

The findings could be used to explain the mysterious phenomena on modular operations
learned by Transformer models.

Digits Digits
¢ PE Size 5 10 2 30 35 c PE Size 5 10 20 30 35
== _u_DE_ " TBase 100 988 T 962 90.2 8811 I _%;E_ " " Base 100 988 9062 90.2 88.1 1
: ‘ Large 100 100 100 100 100 | : ‘ Large 100 100 100 100 100 |
_ Base 100 100 975 858 6521 , Base 100 100 975 858 652 |
: 1000 RPEE  poiwe 100 1000 100 100 100 : : 1000 RPEC - piiee 100 100 1000 100 100 :
Base 100 100 100 100 100 Base 100 100 100 100 100
I I
: RPELa [arge 100 100 100 100 100 : : RPELs Large 100 1000 100 100 100 :
: \PE Base 80.2 698 434 263 6.4 | : \PE Base 80.2 69.8 434 263 6.4 |
: ‘ Large 282 122 99 87 7.7 | : ‘ Large 282 122 99 87 77|
, Base 100 848 49 02 0 ! Base 100 848 49 02 0 !
I I - [e
I 10000 RPE: [ oiee 100 100 100 99.9 264 : I 1000 RPEe e 100 100 100 999 264 :
: RPE,, Base 100 97.9 826 551 39 : RPE,, Dese 100 979 826 551 39

: APE Large 9.1 6:9 53 4-1 3.9 : : APE Large 9.1 69 5.3 4.4 3.9 :
125 R L NN 105 1 12 0! i RPE RS 0 i o0
T e R Y | RPEG D o0y s w2 il
I T I R B O S R R
o RPE DS 03 2 g0 1! BRI sl B O
A Y L RPEu L oa au an_is_in!

Table 4: Modular addition: Extrapolation results for modulo ¢ € {100, 1000, 128,101}. UTransformer Table 5: Modular multiplication: Extrapolation results for modulo ¢ € {100, 1000, 128, 101}. UTrans-
model in their Base and Large format. We report the accuracy reached by the models on 100,000 example former model in their Base and Large format. We report the accuracy reached by the models on 100,000
test sets. example test sets.

Source: Jelassi et al., 2023.
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Further Research
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® Our new work on principled understanding of generalization:

Xingcheng Xu, Zibo Zhao, Haipeng Zhang, and Yanqing Yang. “Relating the
Seemingly Unrelated: Principled Understanding of Generalization for Generative
Models in Arithmetic Reasoning Tasks.” arXiv preprint arXiv:2407.17963, 2024.
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Further Research
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Experiments on Modular Addition

Test Accuracy (%) w.r.t. the Ground Truth on the Domain D;  Theory
Modulus | 2 3 4 5 6 7 8 9 1/p'
p=>50 100 100 100 100 993 920 93.1 952 914 100
p=>51 100 98.5 999 093 0.3 1.8 1.9 1.9 1.6 1.96
p=100 100 100 100 100 100 100 100 100 100 100
p=101 100 100 100 100 0.0 [.2 0.9 1.1 1.0 0.99
p=150 100 100 100 100 33.2 33.6 323 33.0 33.7 33.3
p=151 100 999 999 100 0.0 0.6 0.7 0.7 0.6 0.66
p=200 100 100 100 100 998 989 937 941 0935 100
p=201 100 100 999 999 0.0 0.0 0.5 0.4 0.5 0.50

Table 3: Modular Addition: Test Accuracy w.r.t. the Ground Truth f?(a,b) = a+b" on D;
Note: All the Transformer models in above experiments are instances of MiniGPT, which have been
trained on a random sample drawn from D, (except p = 150). The accuracy is tested on 10,000
random test samples (when n > 2), otherwise on the entire dataset. The outputs of models are

generated using maximum probability sampling.

Source: Xu, Zhao, Zhang, and Yang. “Relating the Seemingly Unrelated: Principled Understanding of
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Generalization for Generative Models in Arithmetic Reasoning Tasks.” arXiv preprint arXiv:2407.17963, 2024.24
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Thanks for Your Attention!

https://www.shlab.org.cn

Shanghai Artificial Intelligence Laboratory
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