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Learning methods

• Supervised learning
• Unsupervised learning
• Semi-supervised learning
• Reinforcement learning
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Framework of Supervised Learning

• Assumption
▶ random vectors

(X , Y ) : (Ω, F ,P) → X × Y ⊂ Rd+1

▶ the joint distribution: PX ,Y = P, the joint distribution function:
P(x , y). (Unknown in the real world problem)

▶ use the information X to predict Y :

Y = f (X ) + ε.

▶ data
D = {(X1, Y1), (X2, Y2), · · · , (XN , YN)},

independent identically distribution (i.i.d.), realization of the random
vector (X , Y )
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Five central elements in supervised learning:

• Data: D = {(X1, Y1), (X2, Y2), · · · , (XN , YN)} ∼ Original Space
• Features: X = (X (1), X (2), · · · , X (d)) ∼ Latent Space
• Models: f ∈ S ∼ Function Space
• Cost/Loss: E[L(Y , f (X ))]
• Algorithm: numerical methods for model training
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Questions

• If we know exactly the joint distribution P, What is the best predictor
f ∗? In which sense?

• In reality, we do not know the joint distribution but the data D. How
can we build a model and get an optimal predictor from the data?
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The answer to the theoretical problem

The best predictor f ∗ depends on the loss function L(·, ·).

f ∗ = arg min
f ∈S

E[L(Y , f (X ))]

• loss function is quadratic,

f ∗(x) = E[Y |X = x ].

• loss function is absolute,

f ∗(x) = Median[Y |X = x ].

• loss function is 0-1 loss,

f ∗(x) = argmaxy P(y |X = x).
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The three main components of the error
The total error: f ∗ − f̂ , where

• f ∗ = the best predictor (Features, Cost/Loss)
• f̂ = the output of the ML model.

Decomposition of the error:

f ∗ − f̂ = f ∗ − fm︸ ︷︷ ︸
appr .

+ fm − fm,N︸ ︷︷ ︸
estim.

+ fm,N − f̂︸ ︷︷ ︸
optim.

• f ∗ − fm = approximation error, due entirely to the choice of the
hypothesis space (Model)

• fm − fm,N = estimation error, additional error due to the fact that we
only have a finite dataset (Data)

• fm,N − f̂ = optimization error, additional error caused by training
(Algorithm)
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Data

• Structured data
• Image, Video, 3D
• Text, Code
• Audio, Speech, Music
• Graph/Network
• Sequential data
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Features

• Extracting good features is the most important thing for getting your
analysis to work. It is much more important than good machine
learning classifiers, fancy statistical techniques, or elegant code.

• Feature extraction is also the most creative part of data science and
the one most closely tied to domain expertise.

• The best features are the ones that carefully reflect the thing you are
studying.
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Models: Which space does a model f live in?

The living space of model is called the hypothesis space such as the set of
all measurable functions, the set of linear functions, or polynomial
functions, or tree-like functions et al.

• Nonparametric model:

f ∈ S = {f lives in some function space}.

• Parametric model:

f ∈ S = {f |f = fθ, θ ∈ Rq}.
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Models: Examples

Example
Linear regression:
f ∈ S = {fβ|fβ(x) = β0 + β′

1x , x ∈ Rq, (β0, β1) ∈ Rq+1}.

Example
Polynomial regression:
f ∈ S = {fβ|fβ(x) =

∑q
j=0 βjx j , x ∈ R, β ∈ Rq+1}.

Example
What are the hypothesis spaces of decision trees, random forests, GBDT
and neural networks models (MLP, CNN, RNN, Transformer)? · · ·
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Models: Examples
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Cost/Loss

• Loss function L(Y , f (X ))
▶ quadratic loss function

L(Y , f (X )) = (Y − f (X ))2

▶ absolute loss function

L(Y , f (X )) = |Y − f (X )|
▶ 0-1 loss function (for classification)

L(Y , f (X )) = 1{Y ̸=f (X)}

▶ log-likelihood loss function (for probabilistic models)

L(P(Y |X )) = − log P(Y |X )
▶ ...
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Cost/Loss

• Expected cost

E[L(Y , f (X ))] =
∫

X ×Y
L(y , f (x))P(dx , dy)

• Empirical cost

L̄N(D) = 1
N

N∑
i=1

L(Yi , f (Xi))

Why does the empirical cost work? The answer is the law of large number
(LLN) (Need assume that E|L(Y , f (X ))| < ∞, see Durrett (2019), PTE 5
edition, Theorem 2.2.14 (WLLN) and Theorem 2.4.1(SLLN)), i.e.

1
N

N∑
i=1

L(Yi , f (Xi)) → E[L(Y , f (X ))], a.s.
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Algorithm

• Solve the optimization problem:

f̂ = arg min
f ∈S

1
N

N∑
i=1

L(Yi , f (Xi))

• If the analytic solution exists (e.g. linear regression), the optimizer is
easy to calculate.

• If not, we should use some efficient numerical methods, e.g. gradient
descent optimization algorithms such as Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (Adam) to find the globally
optimal solutions.
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Algorithm: GD
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Geometric interpretation under quadratic loss function
L2(Ω, F ,P) = {Z ∈ F : EP[Z 2] < ∞} is a Hilbert space where
F = σ((X , Y )) and L2(Ω, F0,P) is a closed subspace with F0 = σ(X ).
The conditional expectation E[Y |X ] is the projection of Y onto
L2(Ω, F0,P). We have Y = E[Y |X ] + ε and E[Y |X ] is orthogonal with ε.

Figure: Conditional expectation as projection in L2 space
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Model Assessment

• Assessment
▶ Training error
▶ Test error
▶ Accuracy (classification)
▶ Generalization error (Generalization ability)

E[L(Y , f̂ (X ))] =
∫

X ×Y

L(y , f̂ (x))P(dx , dy)

▶ Completeness (Fudenberg et al. (2022), JPE)
• Bias-Variance Tradeoff

E[(Y − f̂ (X ))2]
= Var(f̂ (X )) + E[(f (X ) − Ef̂ (X ))2] + Var(ε)
= Var(f̂ (X )) + E[Bias2(f̂ (X ))] + Var(ε)
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Overfitting problem
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Model Selection

• Regularization (Occam’s razor)

min
f ∈S

1
N

N∑
i=1

L(Yi , f (Xi)) + λJ(f ), λ ≥ 0.

• Cross validation
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Example: regularization and cross-validation

LASSO (Least Absolute Shrinkage And Selection Operator).

• Deal with high dimensional regression problem. The empirical loss is

ELN(D) = 1
N

N∑
i=1

(yi − β′xi)2 + λ
q∑

j=1
|βj |, λ ≥ 0.

• The idea is to penalize model complexity.
▶ this induces bias but can reduce variance.

• LASSO sets many β to zero and shrinks remaining towards zero.
• Tuning parameter λ is most often determined by cross-validation or

AIC or BIC.
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