The Basics of Machine Learning

Xingcheng Xu

2021

Xingcheng Xu The Basics of Machine Learning



Learning hods

Supervised learning

® Unsupervised learning

Semi-supervised learning

Reinforcement learning
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Framework of Supervised Learning

® Assumption
» random vectors

(X,Y): (Q,F,P) = 2 x% c R

> the joint distribution: Px y =P, the joint distribution function:
P(x,y). (Unknown in the real world problem)
» use the information X to predict Y:

Y =f(X)+e.

> data
D= {(X17 Yl)a (X27 Y2)a T 7(XN3 YN)}a

independent identically distribution (i.i.d.), realization of the random
vector (X, Y)
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Five central elements in supervised learning:

Data: D = {(X1, Y1), (X2, Y2),---,(Xn, Yn)} ~ Original Space
Features: X = (X(l),X(Z)7 e ,X(d)) ~ Latent Space

Models: f € . ~ Function Space

Cost/Loss: E[L(Y, f(X))]

Algorithm: numerical methods for model training
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e |f we know exactly the joint distribution PP, What is the best predictor
f*?7 In which sense?

® In reality, we do not know the joint distribution but the data D. How
can we build a model and get an optimal predictor from the data?
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The answer to the theoretical problem

The best predictor f* depends on the loss function L(,-).

f*=arg P;!;IE[L(Y, f(X))]

® |oss function is quadratic,
*(x) =E[Y|X = x].
® |oss function is absolute,
f*(x) = Median[Y|X = x].
® |oss function is 0-1 loss,

f*(x) = argmax, P(y|X = x).
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The three main components of the error

The total error: f* — 72- where

® f* = the best predictor (Features, Cost/Loss)
o f=the output of the ML model.

Decomposition of the error:

~

f*—F=f" —fotfmn— fon+ oy —
— — ——

appr- estim. optim.

e f* — f,, = approximation error, due entirely to the choice of the
hypothesis space (Model)

® fm — fm,n = estimation error, additional error due to the fact that we
only have a finite dataset (Data)

® N — f= optimization error, additional error caused by training
(Algorithm)
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Structured data
Image, Video, 3D
Text, Code

Audio, Speech, Music
Graph/Network
Sequential data
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Features

® Extracting good features is the most important thing for getting your
analysis to work. It is much more important than good machine
learning classifiers, fancy statistical techniques, or elegant code.

® Feature extraction is also the most creative part of data science and
the one most closely tied to domain expertise.

® The best features are the ones that carefully reflect the thing you are
studying.
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Models: Which space does a model f live in?

The living space of model is called the hypothesis space such as the set of
all measurable functions, the set of linear functions, or polynomial
functions, or tree-like functions et al.

® Nonparametric model:

f e ¥ ={f lives in some function space}.

® Parametric model:

fes={fIf =1, 6 cRI}.
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Models: Examples

Linear regression:
f e = {fslfs(x) = o + Bix, x € RY, (Bo,f1) € RIT}.

Polynomial regression:
fes ={flfs(x) =2, 6x, xR, feRIt}

What are the hypothesis spaces of decision trees, random forests, GBDT
and neural networks models (MLP, CNN, RNN, Transformer)? - - -
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Models: Examples

Output
Probabilities
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e Loss function L(Y, f(X))
» quadratic loss function

L(Y.f(X)) = (Y = £(X))*

» absolute loss function

LY, £(X)) =Y = £(X)|

» 0-1 loss function (for classification)

L(Y, (X)) = Liyzrxy

> log-likelihood loss function (for probabilistic models)

L(P(Y]X)) = —log P(Y|X)

Xingcheng Xu The Basics of Machine Learning



® Expected cost

EIL(YFOON = [ L0, F))P(dx,dy)

® Empirical cost

B} 1Y
Ly(D) = 2 L(Yi, f(X)))

i=1

Why does the empirical cost work? The answer is the law of large number
(LLN) (Need assume that E|L(Y, f(X))| < oo, see Durrett (2019), PTE 5
edition, Theorem 2.2.14 (WLLN) and Theorem 2.4.1(SLLN)), i.e

—ZL(Y,,f )) = E[L(Y, f(X))], a.s.
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Algorithm

e Solve the optimization problem:
. 1
f=argmin ; L(Y: £(Xi))

e If the analytic solution exists (e.g. linear regression), the optimizer is
easy to calculate.

e |f not, we should use some efficient numerical methods, e.g. gradient
descent optimization algorithms such as Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (Adam) to find the globally
optimal solutions.
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Algorithm: GD
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Geometric interpretation under quadratic loss function

L2(Q, F,P) ={Z € F: Ep[Z?] < oo} is a Hilbert space where
F=0((X,Y)) and L?(, Fo,P) is a closed subspace with Fo = o(X).
The conditional expectation E[Y|X] is the projection of Y onto
L2(Q, Fo,P). We have Y = E[Y|X] + ¢ and E[Y|X] is orthogonal with

Figure: Conditional expectation as projection in L2 space
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Model Assessment

® Assessment

» Training error

> Test error

» Accuracy (classification)

> Generalization error (Generalization ability)

E[L(Y. F(X))] = /% L(y. F(x))P(dx. dy)

X

» Completeness (Fudenberg et al. (2022), JPE)
® Bias-Variance Tradeoff

E[(Y — F(X))?]
= Var(f(X)) + E[(f(X) — Ef(X))?] + Var(c)
= Var(f(X)) + E[Bias?(f(X))] + Var(e)
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Overfitting problem

Low Variance High Variance
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Model Selection

® Regularization (Occam'’s razor)

mm—ZL Yi, F(X) + AJ(F), A >0.

® Cross validation

| Training set |
Training folds Test fold
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Example: regularization and cross-validation

LASSO (Least Absolute Shrinkage And Selection Operator).

® Deal with high dimensional regression problem. The empirical loss is

N

q
ELn(D) = %Z(Yi —B%)*+A>_ 1B, A= 0.

i=1 j=1
® The idea is to penalize model complexity.
P this induces bias but can reduce variance.
e | ASSO sets many 3 to zero and shrinks remaining towards zero.

® Tuning parameter \ is most often determined by cross-validation or
AIC or BIC.
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