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Introduction: Diffusion Models
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Generative Al
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Source: Lilian Weng’s Blog
(https:/lilianweng.github.io/posts/2021-07-11-diffusion-models/)
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Diffusion-based Generative Models

® What are diffusion models in machine learning?

Forward SDE
0x = f(x, )0t + o () 0w

DDPM I

xe = 1P~ xeo + B 20, 2 ~ N (0,1)

NCSN B
Xp =Xp_q + |07 -2, 2, ~ N(0,1)

Noise

Xe+1 xr

Reverse SDE
x = [f(x,t) — a(t)? - V,log p,(x)]0t + o (t)0D

DDPM
| Xees = Hp (e ) +Be 202 ~ N (0,1) |

| RGN Annealed Langevin dynamics |

Fig. 2. A generic framework composing three alternative formulations of diffusion models based on: denoising diffusion probabilistic models
(DDPMs), noise conditioned score networks (NCSNs), and (SDEs). The based on SDEs is a
generalization of the other two. In the forward process, Gaussian noise is gradually added to the input zo over T steps. In the reverse process,
a model learns to restore the original input by gradually removing the noise. In the SDE formulation, the forward process is based on Eq. (11),
while the reverse process is based on Eq. (12). In the DDPM version, the forward stage is based on Eq. (1), while the reverse stage uses Eq. (5).
Analogously, in the NCSN version, the forward process is derived from Eq. (9), while the reverse process uses annealed Langevin dynamics. Best
viewed in color.

Source: Croitoru et al. 2022, Diffusion Models in Vision: A Survey.
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Diffusion-based Generative Models
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Fig. 1. The rough number of papers on diffusion models per year.

Source: Croitoru et al. 2022, Diffusion Models in Vision: A Survey.
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Diffusion-based Generative Models

Many diffusion-based generative models have been proposed with similar
ideas underneath, including:

e diffusion probabilistic models (Sohl-Dickstein et al., 2015)
® noise-conditioned score network (NCSN; Yang & Ermon, 2019)
e denoising diffusion probabilistic models (DDPM; Ho et al. 2020).
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Image-to-Image / Text-to-Image Generation

® DALLE (Ramesh et al. 2021) -- OpenAl

GLIDE (DALLE 1.5) (Nichol, Dhariwal & Ramesh, et al. 2022) --
OpenAl

DALLE 2 (unCLIP) (Ramesh et al. 2022) -- OpenAl

Imagen (Saharia et al. 2022) -- Google

Stable Diffusion (Rombach et al. 2022) -- LMU, Runway; StabilityAl
Midjourney, 2022-

@ R Meta @ Google Google
DALL-E Make-a-scene DALL-E 2 Imagen Parti Stable Diffusion
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Source: stateof.ai, 2022. a2y
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More Applications in Generative Al

® Text-to-Video Generation
» Make-A-Video (Meta Al, Singer et al. (2022-09))

e 3D Generation
» DreamFusion: Text-to-3D using 2D Diffusion(Google, Poole et al.,
(2022-09))
> GET3D: A Generative Model of High Quality 3D Textured Shapes
Learned from Images(NVIDIA, Gao et al., (2022-09))
> Magic3D: High-Resolution Text-to-3D Content Creation(NVIDIA, Lin
et al., (2022-11))
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BSDE-based Generative Models



BSDEs

e Linear BSDEs, proposed by Bismut (1973)

® Pardoux and Peng (1990) established the existence and uniqueness of
nonlinear BSDEs with Lipschitz condition

® Extensively studied and applied in various contexts: ...

e Applications in mathematical finance: El Karoui, Peng and Quenez
(1997), Chen and Epstein (2002), ...

¢ Deep learning to solve BSDEs or PDEs: E, Han and Jentzen (2017,
2018), Ji, Peng, Peng and Zhang (2020, 2022), ...
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BSDEs

® Consider the forward-backward stochastic differential equation
(FBSDE)

t t
Xy =( +/ b(s, Xs)ds +/ o (s, Xs)dWs,
0 0

, , o)
Yt:§+/ f(s,XS,YS,ZS)ds—/ Z.dW,
t t

e Xy = ( is the initial condition, and Y7 = £ is the terminal condition.

® Solving a FBSDE involves finding the F;-adapted stochastic process
(Xt, Yt, Z¢) for all t € [0, T] in a suitable space that satisfies the
equation above, given the functions b, o, f, Brownian morion W4, the
initial condition ¢ and the terminal condition &.
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FBSDEs and Relationship with PDEs

® The FBSDEs are connected to semilinear parabolic PDEs through the
Feynman-Kac formula under appropriate conditions. The processes Y;
and Z; depend on the time variable t and the forward process X;,
rather than the entire path of X. Specifically,

Y: = u(t, X;) and Z; = Vu(t, X¢)To(t, X¢),

where u(t, x) satisfies the corresponding PDE.

® This property is advantageous in designing deep neural networks for
solving FBSDE models.
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Discrete Scheme for FBSDEs

® Use the Euler forward discrete scheme:
th+1 ~ th + b(tr” th)Atn =+ O'(t,-” th)Ath
Yt,,+1 ~ Yt,, - f(tn,th, Yt,n Ztn)Atn + ZtnAth

where At, = t,11 — tp and AW, = W, — W,

n
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Model Architecture

e Employ two deep neural networks to approximate the initial value Yy
and the control process Z;:

Yo = N (Xo), Zi, =~ N%(t,, Xs,), (3)

where the deep neural networks we used in our experiments in this
paper are as follows:

N?(x):=¢oLyobH_10Ly_10- 081 0L1(x),

in which H is the depth of the neural network, Lp(xp) = wpxp + by, is
the linear transformation, & is the nonlinear activation function, and
¢ is the mapping function to the state space.

® Regularization technique: dropout in neural networks.
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Model Architecture
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Figure: Model Architecture of the BSDE-Gen Models
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Maximum Mean Discrepancy (MMD) Loss

® Assume there is a feature map ¢ : X — H from the original space X
to a Hilbert space H, and the associated kernel is a function
K : X x X — R with the property that (¢)(x),¥(y))n = K(x, y) for
all x and y in X.

® The MMD computes the distance between probability distributions as
the distance between mean embeddings of features via reproducing
kernel Hilbert space (RKHS) . Let P and Q be two probabilities of
random elements on the space X, the MMD is defined as

MMD?*(P, Q) = ||lup — poll3,

where pup = Exp[t)(X)] and pg = Eyg[t(Y)] are the mean
embeddings of probabilities P and Q in a RKHS H, respectively.

* Under suitable conditions, MMD?(PP, Q) = 0 if and only if P = Q.
See e.g. Gretton et al. (2012).
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Training Strategy

MMD Loss
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Figure: Training Strategies for BSDE-Gen Models
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Experiments



Data: MNIST and FashionMNIST, each consisting of 60,000
grayscale images of 28x28 pixels

The forward state process X; is modeled as a stationary
Ornstein-Uhlenbeck (OU) process starting from dx = 32 dimensional
standard normal distribution { ~ .47(0, l4, ), with the drift function
b(t,x) = —x and the diffusion function o(t,x) = /24, .

The generator function f of the backward process Y; is defined as
f(t,x,y,z) = Ax + By + k|z| where |z| := (Zjdﬁ’l |zij|)i=1,2,- dy. and
A, B,k are given.

The deep neural networks A% (Xp) and N2 (t,, Xt ):
three-hidden-layered architectures with the GELU activation function
and dropout regularization with probability p = 0.2. The last
mapping function ¢ is linear.

Trained the BSDE-based deep generative model using the RMSprop
optimizer with a learning rate of le-4, a batch size of 512, and 20,000
epochs with the PyTorch framework using 8 NVIDIA A100 GPUs.
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Generated Examples
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Discussion



Discussion

Reduce Computational Complexity

Build Better Diffusion Processes

> Training under estimation of log-likelihood log p(Y7) or score functions
Vlog p(Yt)

Use Better Model Architecture

> U-Net Architecture (capable of capturing both local and global features
in images)

Conditional BSDE-Gen Models

Extensive Applications in Machine Learning
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