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Introduction



Questions

1 What is uncertainty(risk/ambiguity/...)? How much important is it?
2 Where are the sources of ambiguity from? How to understand and

model ambiguity?
3 What benefits can we get from recognizing the presence of ambiguity

with respect to the pure risk situation?
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Uncertainty

Source: Meder et al. (2013), Trends in Cognitive Sciences.
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Examples of Uncertainty

• Urn 1: 30 red, 30 black and 30 yellow balls (risk/deterministic
probability)

• Urn 2: 30 red balls and 60 black or yellow balls (subjective ignorance)
• Urn 3: 90 balls, 30 in red but the number of black or yellow balls are

uniformly distributed in this magic urn (objective randomness)
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Risk and Ambiguity

• Risk refers to situations where the perceived likelihoods of events of
interest can be represented by a probability measure.

• Ambiguity refers to situations where the information available to the
decision-maker is too imprecise to be summarized by a probability
measure (subjective ignorance) or results from genuine randomness in
the external environment (objective randomness).
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Ambiguity and Decision-Making

• Ellsberg Paradox: an urn containing 90 balls, identical except for
color. You know that exactly 30 of the balls are red. Each of the
remaining 60 balls is either black or yellow, but you do not know the
relative numbers of black and yellow balls.1

• Preference: empirically f1 ≻ f2 but f4 ≻ f3, which contradicts with
the risk-based models.

1Ellsberg (1961), Machina and Schmeidler (1992)
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Ambiguity and Decision-Making

• Ellsberg Paradox demonstrated that the choices under ambiguity are
distinct from risk and such a distinction is behaviorally meaningful,
and suggests that ambiguity is at least as prominent as risk in making
investment decisions.

• An agent using the wrong probability measure may plausibly be aware
of this possibility and thus be led to seek robust decisions. Such
self-awareness and a desire for robust decisions lead naturally to
consideration of sets of priors.

• Different agent groups use different probability measures to generate
contents or make decisions, leading naturally to consideration of sets
of probabilities.
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Language, Image, ...

Generated by people (decision) or environment (semantic ambiguity,
perceptual vagueness)

• incomplete knowledge, limited information (feeling, perception,
experiences)

• interaction with heterogeneous agents
• genuine randomness in the external environment
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Literature

• Science:
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▶ Levy et al. (2010). Neural representation of subjective value under risk
and ambiguity. Journal of neurophysiology.

▶ Bach et al. (2011). The known unknowns: neural representation of
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The Transformer



Transformers

• The landmark paper:
▶ The Transformer (Vaswani et al., 2017)

• Nature Language Processing:
▶ BERT (Devlin et al., 2018),
▶ OpenAI GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019),

GPT-3 (Brown et al., 2020),
▶ Google T5 (Raffel et al., 2019), ...

• Computer Vision:
▶ Vision Transformer (Dosovitskiy et al., 2020), ...

• Science: Structural Biology
▶ AlphaFold 2 (Jumper et al., 2021), ...

• AIGC:
▶ CLIP (Radford et al., 2021),
▶ DALL-E 2 (Ramesh et al., 2022), Stable Diffusion (Rombach et al.,

2022), eDiff-I (Balaji et al., 2022), ...
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The Transformer: a Probability Machine

Source: Vaswani et al. (2017)
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The Transformer: a Probability Machine

Source: Alammar (2018), The Illustrated Transformer
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The Transformer: a Probability Machine
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Generative Ambiguity Modeling



Conventional Wisdom in AI

Standard approaches in machine learning for sequential modeling such as
language models are to factorize the joint probabilities P(x) of a sequence
x = (s1, s2, · · · , sn) ∈ V ∗ in a space of sequences V ∗ = ∪∞

ℓ=0V ℓ (V is a
vocabulary of tokens) as the product of conditional probabilities (e.g.
GPT, GPT-2, GPT-3)

P(x) =
n∏

t=1
P(st |s1, s2, · · · , st−1) (1)

or to factorize the conditional probabilities P(x |z) of a pair of sequences
x = (s1, s2, · · · , sn) ∈ V ∗ and z ∈ V ∗ as the product of following
conditionals (e.g. the original Transformer)

P(x |z) =
n∏

t=1
P(st |s1, s2, · · · , st−1, z). (2)
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Sequence With Ambiguity

• (Ω, {Gi}∞
i=1, G) = (

∏∞
i=1 Ωi , {Gi}∞

i=1, σ(∪∞
i=1Gi)) a filtered space

modeling a sequence of experiments/games/events/objects.
• The set of possible outcomes for the i th experiment is Ωi . Gi is a

σ-algebra on
∏i

j=1 Ωj representing the information regarding
experiments 1, 2, · · · , i .

• The ex ante probabilities of experiments are not known precisely and
are represented by a set P of probability measures on (Ω, G), and
assume that all measures in P are equivalent on each Gn.
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Probability Structure: Rectangularity

• P0,n := {P|Gn : P ∈ P}, Ω = Ω(n) × Ω(n+1) =
∏n

i=1 Ωi ×
∏∞

i=n+1 Ωi

• Probability kernel: a functional λ : Ω(n) × G(n+1) → [0, 1] satisfying
Gn-measurable and being a probability measure on (Ω(n+1), G(n+1)).

• P-kernel: If ∀ω(n) ∈ Ω(n), ∃Q ∈ P satisfying

λ(ω(n), A) = Q(Ω(n) × A|Gn)(ω(n)), ∀A ∈ G(n+1).

• P is rectangular if ∀n ∈ N, ∀pn ∈ P0,n and for every P-kernel λ, if
P is defined as

P(A) :=
∫

IA(ω)λ(ω(n), dω(n+1))pn(dω(n)), ∀A ∈ G, (3)

then P ∈ P.

• P is closed w.r.t. pasting of alien marginals and conditionals,
endowing P with a recursive structure.
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Example of Rectangularity: IID Model

• Experiments have a common set of possible outcomes Ω and a
common σ-algebra F .

• Fix a subset L ⊂ M (Ω, F) & all measures in L are equivalent.
• Let Pn,n+1(ω(n)) denote the restriction to Gn+1 of P(·|Gn)(ω(n)).
• IID (Indistinguishably and Independently Distributed) model:

P IID =
{

P ∈ M (Ω, G) : Pn,n+1(ω(n)) ∈ L, ∀n, ω(n) ∈ Ω(n)
}

• The set consists of all measures whose one-step-ahead conditionals,
at every history, lie in L modeling partial ignorance about each
experiment separately.

• If L = {P}, P IID degenerates to a probability (the conventional
probability model, random walk).
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Example of IID Model

• Each experiment can produce one of the three outcomes (3 words in
a vocabulary): Ω = {w1, w2, w3} and F = 2Ω.

• Probabilities are not known exactly but it is known that, for each
experiment, the outcomes are given by (0 < q < p, p + q ≤ 1)

L = {P1 = (p, q, 1 − p − q), P2 = (q, p, 1 − p − q)}.

• The ignorance about the relation between experiments is subject to
the IID model P IID.
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Deep Ambiguity Sequence Model: GAMMT



Deep Ambiguity Sequence Model: GAMMT
The GAMMT: An Ambiguity Machine

Figure: Model architecture - The Transformer decoders to approximate a set of
probabilities
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Deep Ambiguity Sequence Model: GAMMT
There is a set of one-step-ahead conditional probabilities produced by the
GAMMT model at every time step/every position of a sequence. The size
of the set characterizes the level of ambiguity of data.
GAMMT: P(x) = {P(x)| P ∈ M }, M = {Pθ1 , Pθ2 , · · · , PθM }
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Deep Ambiguity Sequence Model: GAMMT

The model described above can be generalised to the encoder-decoder
architectures with Transformers to approximate sets of conditional
probabilities

P(x |z) = {P(x |z)| P ∈ M }

where z and x are a pair of input (source) or output (target) token
sequences as the original Transformer/Google T5. (Could share the same
encoder, or every parallel transformer has its only encoder.)
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Algorithm: Architecture
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Algorithm: Training
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Algorithm: Inference
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Validation on NLP Tasks

• Dataset
▶ CommonCrawl
▶ WebText
▶ Books1, Books2
▶ Wikipedia

• Tasks
▶ Machine translation
▶ Semantic similarity
▶ Text classification
▶ Reading comprehension, summarization
▶ Natural language inference, textual entailment
▶ Commonsense reasoning, Question answering
▶ Cloze tasks, Sentence/paragraph completion tasks
▶ Article generation

Ref. GPT, GPT-2, GPT-3, T5, ...
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More

• Computer Vision: image as patch token sequence
• Audio Generation
• Protein Structure Prediction
• DNA/RNA Structure Prediction
• Reinforcement Learning
• ...
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Concluding Remarks

• long range dependencies (attention)
• zero-shot learning (scale)
• admitting ambiguity (structure)
• high diversity of generation (structure)
• multiple representations (structure)
• parallel computing, high computational efficiency (structure)
• ...
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Thanks!
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