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Foundation Models



Transformer: Attention is all you need

All but one author of the landmark paper that introduced transformer-based neural networks have left
Google to build their own startups in AGlI, conversational agents, Al-first biotech and blockchain.

Attention Is All You Need

Adept ©haracter.ai Adept ? Inceptive

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
’ Llion Jones* Aidan N. Gomez* ' Lukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

/ Illia Polosukhin* + _____ N E A R

Co:llere illia.polosukhin@gmail.com NCORBORATED

Vaswani, et al (2017). "Attention is all you need." NeurlIPS. (#% 5] F k% :

59638)



Transformer: LLM

Five years after the Transformer:

GPT-3, PaLM, LaMDA, Gopher, OPT, BLOOM, GPT-Neo, Megatron-Turing NLG, GLM-
130B, ChatGPT, etc. all use the original attention layer in their transformers.

(@) Eleutheral

(6) EleutherAl r‘m‘nin = GPT‘NEOX (ZOB)

GPT-j (6B) Megatron o) —
@ é‘? Google (708) o Meta
GPT-3 (175B) Pan-Gu (2008B) FLAN (137B) | Gopher (280B) OPT (175B)
| | Jan 2022 | Aug 2022
| __ ¢ Il Bl I BN IS B B B B B B B
June 2020 May 2021 | Aug 2021 | Sep 2021 | May 2022
HyperCLOVA (204B) Yuan 1.0 (246B) | LaMDA (280B) GLM (130B)
NAVER LABS inspur Google il 44
Jurassic-1 Jumbo (204B) PaLGM (5408)
oogle

Al21labs
Ernie 3.0 Titan (260B)

Open-sourced models in red BaiNa® State Of.ai 2 0 2 2



Transformer: Vision

Google proposed the VIT (Vision Transformer) model, a convolution-free transformer architecture.

ViTs benefit from scaling parameters and pre-training data. This helped ViT achieve 90.45% top-1
accuracy on ImageNet, which was the SOTA until CoAtNet, an architecture combining self-attention
and convolutions, dethroned it (90.88%).

Many more Transformers perform well on other CV tasks: e.g. Segmenter (Image Segmentation), Swin-
Transformer (Object Detection).

Vision Transformer (ViT) Transformer Encoder
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Source: Dosovitskiy et al. (2021).



Transformer: Structural Biology

Models for proteins:

4 BB
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| | | Aug 2022
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Source: stateof.ai, 2022.



EHERHES: From Amino Acids to Proteins

FIGURE. (A) Formula of the amino acid, (B) Ball and stick
representation of an amino acid, (C) Poly-peptide chain with
illustrating the torsion angles y and ¢ for each amino acid in
chain, (D) Human hemoglobin, 1GZX, ball and chain
representation with an amino acid length of 141.

There are 20 types of amino acids commonly found in proteins.

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with

of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing

acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA

hrmine pipna Pleared Coaed pEra A protein's biological function is determined by its three-
Figure 1: Complex 3D shapes emerge from a string of amino acids. dimensional native structure, which is encoded by its amino

acid sequence.



Protein Backbone Geometry

The easier (but still pretty hard) version of the protein structure prediction problem is to determine
the protein backbone geometry.

Every amino acid is modelled as
a triangle, representing the three
atoms of the backbone.

DeepMind (Senior et al., 2020 [Deep CNN]; Jumper et al., 2021 [SE(3)-Transformer])



AlphaFold 2

Since its open sourcing, DeepMind’s AlphaFold 2 has been used in hundreds of research papers. The
company has now deployed the system to predict the 3D structure of 200 million known proteins from
plants, bacteria, animals and other organisms. The extent of the downstream breakthroughs enabled by
this technology - ranging from drug discovery to basic science - will need a few years to materialize.
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DeepMind (Senior et al., 2020 [Deep CNN]; Jumper et al., 2021 [SE(3)-Transformer])



Transformer: Coding

Corporate Al labs rush into Al for code research

OpenAl’s Codex, which drives GitHub Copiﬂot has impressed the computer science community with its ability to
complete code on multiple lines or directly from natural language instructions. This success spurred more
research in this space, including from Salesforce, Google and DeepMind. @~ 7 R |

e With the conversational CodeGen, Salesforce researchers leverage the language | @
understanding of LLMs to specify coding requirements in multiturn language ¢ = |
interactions. It is the only open source model to be competitive with Codex. [ [

e A more impressive feat was achieved by Google’s LLM PalLM, which achieves a similar
performance to Codex, but with 50x less code in its training data (PaLM was trained
on a larger non-code dataset). When fine-tuned on Python code, PaLM outperformed
(82% vs. 71.7% SOTA) peers on Deepfix, a code repair task.

e DeepMind’s AlphaCode tackles a different problem: the generation of whole . Gl
programs on competitive programming tasks. It ranked in the top half on Codeforces, ‘ 0z 4 %D@'
a coding competitions platform. It was pre-trained on GitHub data and fine-tuned on
Codeforces problems and solutions. Millions of possible solutions are then sampled, = =" - & evaluste
filtered, and clustered to obtain 10 final candidate submissions.

o e stateof.ai 2022



More: AIGC

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed

Transinte Englisn to Frenct K che

One-shot

In addition to the 1ask description, the model sees a single
example of the task. No gradeent updates are performed

slete English to French

r +» loytre de e

Few-shot
in addition to the task description, the model sees a fow
examples of the task. No gradient updates are performed

slate English to Fronch

ses otter »» lowtre de mer
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Text-to-image

Pk ad it b i e U e ¢t St b o
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Text-to-video

(2) A dog wearing a superhero outfit with red cape flying through the sky.

Make-a-Video

Text-to-3D

a frog weanmg » vwemtor*

DreamFusion

Text-to-Code
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Foundation Models

Tasks
g, Question 9
ﬁ" Answering '

: Sentiment
r«ﬁ.e. : ' Analysis

Text LL’! e
™ | @

. : . . .
% b V—_ Homogenization
’/ Images '64 y Y/ Extraction o Emergence
. s J Adaptation
Speech /\/W\} Tramng Foundation N Image
Model %} Captioning ;& /
© Structured i
! Data
P Object
3D Signals ge %ﬁ? Recognition
w\ Instruction o
lsgi' Following . - Source: On the Opportunities and

Risks of Foundation Models, 2022

Foundation model can centralize the information from all the data from various modalities.
This one model can then be adapted to a wide range of downstream tasks.



Generative Al



HEpkTVA TERE

GAN: Adversarial < || x| Discriminator 7 Generator 4
training G(z)
VAE: maximize X Z Decoder - x!
variational lower bound po(x|z)
Flow-based models: x —» Flow J z N Inlnlerse A x!
Invertible transform of f(x) [ (z)
distributions
Diffusion models:_ X0 - X1 - Xo . z
Gradually add Gaussian - - - iutuiaiuiteta *-------
noise and then reverse

Source: Lilian Weng’s Blog
(https://lilianweng.github.io/posts/2021-07-11-diffusion-models/)



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion Models

I o2
= o

Number of papers
)]
=

0. —

2015 2016 2017 2018 2019 2020 2021 2022
Years

Fig. 1. The rough number of papers on diffusion models per year.

Source: Croitoru et al. 2022, Diffusion Models in Vision: A Survey.



Diffusion Models

Many diffusion-based generative models have been proposed with similar ideas underneath,
Including

« diffusion probabilistic models (Sohl-Dickstein et al., 2015)

* noise-conditioned score network (NCSN; Yang & Ermon, 2019)

 denoising diffusion probabilistic models (DDPM; Ho et al. 2020).



https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239

Diffusion Models

Forward SDE
0x = f(x,t)ot + a(t)ow

xt=\/1—ﬁt'xt—1+\/.3_t'zt.zt“‘N(O.I)

NCSN ; -
Xt =Xe—q + |0f —0{ 12, 2 ~N(0,])

DDPM

Noise

Xt+1

Reverse SDE
ox = [f(x,t) — a(t)? - V,log p.(x)]0t + o (t)dd

DDPM
Xe_1 = pg(Xe,t) + /Bt - 2, 2, ~ N (0, 1)

NCSH Annealed Langevin dynamics

Fig. 2. A generic framework composing three alternative formulations of diffusion models based on: denoising diffusion probabilistic models
(DDPMs), noise conditioned score networks (NCSNs), and stochastic differential equations (SDEs). The formulation based on SDEs is a
generalization of the other two. In the forward process, Gaussian noise is gradually added to the input 2o over T steps. In the reverse process,
a model learns to restore the original input by gradually removing the noise. In the SDE formulation, the forward process is based on Eq. (11),
while the reverse process is based on Eq. (12). In the DDPM version, the forward stage is based on Eq. (1), while the reverse stage uses Eq. (5).
Analogously, in the NCSN version, the forward process is derived from Eq. (9), while the reverse process uses annealed Langevin dynamics. Best
viewed in color.

Source: Croitoru et al. 2022, Diffusion Models in Vision: A Survey.



Diffusion Models

Diffusion models are widely appreciated for the quality and diversity of the generated samples,
but have high computational burdens, i.e. low speeds due to the high number of steps involved
during sampling.



Diffusion Models: Improvement

Knowledge Progressive Distillation [84]
Denoising Student [120]

Classification of Improved Diffusion Techniques Knowledg:
HTDPM [121]/ES-DDPM [122]/]

Training Diffusion Scheme
CCDF [123]/ [124]

Scheme Learning
Noise Scale FastDPM [125]/Improved DDPM [83]
Designing VDM [126]/ [127]

Analytic-DPM [128]/SN-DDPM [129]/PNR-DDPM [129] )

Analytic
Sampling
DDIM [89]/DEIS [130]/gDDIM [131]/PNDM [98]

Implicit
Sampling Fast-DPM [125]/Efficient Sampling [132]/iODE [133]

Differential
Equation
Dynamic
Programming

Acceleration
Mixture

Speed-Prior: Ito-Taylor [46] )

Error-Prior: Gotta Go Fast [130]/10DE [133]
DPM-Solver [86]/PNDM [98]/DEIS [134]

Training-Free
Sampling

Speed-up
Improvement

DDSS [135]/Efficient Sampling []32]_)
GAN-based: TDPM [121]/Denoising diffusion GAN [85])

VAE-based: DiffuseVAE [136]/ES-DDPM [122] )

Flow-based: DiffFlow [137]_)

LSGM [138]/Score-flow [139]/PDM [140]
INDM [141]/ScoreEBM [142]/ [143]

Score SDE [92]/gDDIM [131]/ VDM [126]/ FastDFM [125]
GGDM [135]/Cold Diffusion [144]/ [145], [146], [147]

Expressiveness
Mixture

Image DataHScore-Flcw [139]/Cold Diffusion [144])

Point Cloud }—(PVD [148]/ [55], [56], [149] )
Latent Space)—[LSGM [138]/Score-flow [139]/PDM [140]/INDM [141])

Score-Diffusion
Unification

Continuous
Space

Diffusion

Improvement

Categorical }—D3PM [87]/ Argmax [150]/ ARDM [151]/ [152] )

VQ-diffusion [153]/Improved VQ-Diffusion [154]/ [155], [156]]
Manifold }—(RGSM [157]/PNDM [98]/RDM [158] )
Source: Cao et al. 2022, A Survey

Graphs __ }—(EDP-GNN [159])
e on Generative Diffusion Model.

Improved DDPM [83]/FastDPM [125]
VDM [126]/D3PM [87]

Data Structure
Diversification

Constrained
Space

Variational Gap
Optimization

Mixed-Modeling

Likelihood
Optimization
Dimension
Reduction

INDM [140]/PDM [141])

Latent
LSGM [138]/PDM [140]/INDM [141])




Diffusion Models: Applications

Classification of Diffusion-based model Applications

Vision

Low-level HCMDE [49]/DDRM [262]/Palette [119]/DiffC [263]/ ]

SRDiff [51]/RePaint [264]

Vision

High-level HFSDM [52]/CARD [53]/GLIDE [223]/LSGM [138]/ ]

SegDiff [267]/VQ-Diffusion [54] / DreamFusion [266]

Computer vision

3D Vision }—(Luo et al. [55]/PVD [271]/PDR [56]/Luo et al. [57] )

Video
Modeling

Medical
Application

Video diffusion [268]/RVD [272]/FDM [273]/MCVD [58]/RaMViD [59] )

Score-MRI [60]/Song et al. [274]/R2D2+ [275] )

Sequential Modeling

Natural Language ’ { Diffusion-LM [61]/Bit Diffusion [62])
Processing

Diffusion
Application

Time Series }—CSDI [63]/SSSD [64]/CSDE [277])

Sound

Generation

Text to Speech j——[

(Molecular
Conformation
Generation

Al for Science )<‘

(Material

| Design

WaveGrad [65]/DiffWave [66]/GradTTS [67]/Diff-TTS [278]/
DiffVC [279]/DiffSinger [68]/Diffsound [280]

EdiTTS [69]/Guided-TTS [70]/Guided-TTS2 [71]/Levkovitch et al. [281]/
SpecGrad [72]/It6TTS [47]/ProDiff [54]/BinauralGrad [282]

Torsional diffusion [77]/DiffDock [284]

| {ConfGF [283]/DGSM [75]/GeoDiff [76]/EDM [44]] Source: Cao et al. 2022, A Survey

on Generative Diffusion Model.

\
A(CDVAE [285]/Luo et al. [78]/ Anand et al. [79]/ProteinSGM [286]/ DiffFolding [287] j




Text-to-lmage Generation

A 5 J (text-to-image generation):

« DALL £ (Ramesh et al. 2021) -- OpenAl
[Transformer/GPT-3 + VAE Models]

 GLIDE (DALL £ 1.5) (Nichol, Dhariwal & Ramesh, et al. 2022) -- OpenAl
[CLIP guidance and classifier-free guidance + Diffusion Models]

« DALL £ 2 (unCLIP) (Ramesh et al. 2022) -- OpenAl
[CLIP + Diffusion Models]

« Imagen (Saharia et al. 2022) -- Google
[ Transformer/T5 + Diffusion Models]

« Stable Diffusion (Rombach et al. 2022) -- LMU, Runway and StabilityAl
[ Transformer/CLIP text encoder + Diffusion Models]

@ O Meta @ Google Google J
DALL-E Make-a-scene DALL-E 2 Imagen Parti Stable Diffusion

| | Apr 2022 | |
LI |

Jan 2021 Mar 2022 | May 2022 June 2022 July 2022 Aug 2022

DALL-E mini

CogView2

Source: stateof.ai, 2022. .


https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2112.10752

CLIP: Text-Image Alignment

1. Contrastive pre-training

pep pler the s
aussie pup Encoder ] 1 1 l
T P T3 Tn
— I L Ity I I Ty
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2. Create dataset classifier from label text

a photo of

a {object}.

3. Use for zero-shot prediction

Image
Encoder

Text
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¥
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DALL-E 2/unCLIP: Architecture

- — CLIP objective img
= = encoder
“a corgi -
playing a
flame I | s aesszsscassessssses
throwing o z .
. N —
trumpet . ééooo b2
30
— B 0 O
"""""""""""""""""""""""" 5+08+0» MO O
O O
prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.



DALL<E 2/unCLIP;: Mathematics

Our training dataset consists of pairs (z, y) of images x and their corresponding captions y. Given an image z,
let z; and z; be its CLIP image and text embeddings, respectively. We design our generative stack to produce
images from captions using two components:

» A prior P(z;|y) that produces CLIP image embeddings z; conditioned on captions .

* A decoder P(x|z;,y) that produces images = conditioned on CLIP image embeddings z; (and
optionally text captions ).

The decoder allows us to invert images given their CLIP image embeddings, while the prior allows us to learn
a generative model of the image embeddings themselves. Stacking these two components yields a generative
model P(z|y) of images x given captions y:

P(z|ly) = P(x,zily) = P(z|zi,y)P(zily)-

The first equality holds because z; is a deterministic function of . The second equality holds because of the
chain rule. Thus, we can sample from the true conditional distribution P(x|y) by first sampling z; using the

prior, and then sampling = using the decoder.



DALL-E 2/unCLIP: Image Variations

Figure 3: Variations of an input image by encoding with CLIP and then decoding with a diffusion model. The
variations preserve both semantic information like presence of a clock in the painting and the overlapping
strokes in the logo, as well as stylistic elements like the surrealism in the painting and the color gradients in
the logo, while varying the non-essential details.



DALL-E 2/unCLIP: Image Fusion

Figure 4: Variations between two images by interpolating their CLIP image embedding and then decoding
with a diffusion model. We fix the decoder seed across each row. The intermediate variations naturally blend
the content and style from both input images.



DALL<E 2/unCLIP: Language-Guided Image Manipulation

a photo of a landséalﬁe in winter — a photo of a landscape in fall

Figure 5: Text diffs applied to images by interpolating between their CLIP image embeddings and a normalised
difference of the CLIP text embeddings produced from the two descriptions. We also perform DDIM inversion
to perfectly reconstruct the input image in the first column, and fix the decoder DDIM noise across each row.



Imagen

Imagen uses a large frozen T5-XXL encoder to
encode the input text into embeddings. A conditional
diffusion model maps the text embedding into a

64 x64 image. Imagen further utilizes text-conditional
super-resolution diffusion models to upsample the
Image 64x64—256x256 and 256x256—1024x1024.

Text

'

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

164 X 64 Image

super-Resolution

Diffusion Model

256 x 256 Image

Y

Diffusion Model

|

1024 x 1024 Image

Super-Resolution

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”




More: Text-to-Video Generation

Video: Make-A-Video (Meta Al, Singer et al. (2022-09))

Spatiotemporal Decoder Spatiotemporal Spatial

t Frame Interpolation Sp er—Resat{utian Super-Resolution

Input Text

Figure 2: Make-A-Video high-level architecture. Given input text z translated by the prior P into
an image embedding, and a desired frame rate fps, the decoder D' generates 16 64 x 64 frames,
which are then interpolated to a higher frame rate by 1, and increased in resolution to 256 x 256
by SR} and 768 x 768 by SRy, resulting in a high-spatiotemporal-resolution generated video 7.

Make-A-Video’s final T2V inference scheme (depicted in Fig. 2) can be formulated as:
Ut =SRhOSRfoTF thoPo(ﬁ,Cm(:ﬂ)), (1)

where 7, is the generated video, SR, SR; are the spatial and spatiotemporal super-resolution net-
works (Sec. 3.2), TF is a frame interpolation network (Sec. 3.3), D! is the spatiotemporal decoder
(Sec. 3.2), P is the prior (Sec. 3.1),  is the BPE-encoded text, C, is the CLIP text encoder (Rad-
ford et al., 2021), and z is the input text. The three main components are described in detail in the
following sections.


https://arxiv.org/abs/2209.14792

More: 3D Generation

DreamFusion: Text-to-3D using 2D Diffusion

(Google, Poole et al., (2022-09))

GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images
(NVIDIA, Gao et al., (2022-09))

Magic3D: High-Resolution Text-to-3D Content Creation

(NVIDIA, Lin et al., (2022-11))

+~— Results and applications of Magic3D.
» Top: high-resolution text-to-3D generation. Magic3D can
generate high-quality and high-resolution 3D models from text

; of osufiedgeyraope 3719083 hokingabalion prompts.

- Bottom: high-resolution prompt-based editing. Magic3D can edit
3D models by fine-tuning with the diffusion prior using a
different prompt. Taking the low-resolution 3D model as the
input (left), Magic3D can modify different parts of the 3D model
corresponding to different input text prompts. Together with

a silver platter piled
high with fruits

various creative controls on the generated 3D models, Magic3D
Is a convenient tool for augmenting 3D content creation.


https://arxiv.org/pdf/2209.14988.pdf
https://arxiv.org/pdf/2209.11163.pdf
https://arxiv.org/pdf/2211.10440.pdf
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Data-Centric Al



Data-Centric Al

Examining a sample of recent publications revealed that 99% of the papers

were model-centric with only 1% being data-centric. ~ Andrew NG

Al research has been totally model-centric in nature! This is because the norm has been to produce
challenging and big datasets which become widely accepted benchmarks to access performance on a
problem. Then follows a race amongst academics to achieve state of the art on these benchmarks!
Since, we have already fixed the state of dataset most of the research is channeled at model-centric

approach. This creates a general impression in the community that model-centric approach is more
promising.

Data-centric Al is in the “ideas and principles” phase.



Data-Centric Al
Think of a Data-Centric Al system as programming with focus on data instead of code.

Computer vision task

, ’ Accuracy
(steel sheet inspection)
Baseline 76.2%
Model-Centric Data-Centric Model-Centric 0%
Data-Centric +16.9%
Focus on Focus on (93.1%)

AI - COde + ( D at a ) Increase model accuracy with less data

0.65

shift in focus

0.55

Accuracy (mAP)

wes  Clean Data
045

=== Noisy Data

Source: LandingAl, Andrew Ng
https://landing.ai/data-centric-ai/

Number of training examples



Data-Centric Al

* Model-centric Al:
» Treats the training data as exogenous from the machine-learning development process
» Focus on feature engineering, algorithm design, bespoke architecture design, etc.
« Data-centric Al:
» Data quality and quantity is increasingly the key to successful results.
» Spending time on labeling, managing, slicing, augmenting, and curating the data efficiently, with
the model itself relatively more fixed.
» A programmatic process for labeling and iterating the data is the crucial determiner of progress.
» Treat subject-matter experts (SMESs) as integral to the development process, codified expert
knowledge.



Data-Centric Al

Deploy in

Scope Collect Train
production

project data model

Making it systematic — iteratively improving the data:
Train a model
Error analysis to identify the types of data the algorithm does poorly on (e.g.,
speech with car noise) 5
Either get more of that data via data cugmentcti(%, data generation or data
collection (change inputs x) or give more consistent definition for labels if they
were found to be ambiguous (change labels y)

Source: Andrew Ng

From Big Data to Good Data

Try to ensure consistently high-quality data in all phases of the
ML project lifecycle.

Good data is:
 Cover of important cases (good coverage of inputs x)
» Defined consistently (definition of labels y is
unambiguous)
- Has timely feedback from production data (distribution
covers data drift and concept drift)
» Sized appropriately



Data-Centric Al

Papers:

Mariani et al. (2018). BAGAN: Data Augmentation with Balancing GAN.

Cubuk et al. (2019). RandAugment: Practical automated data augmentation with a reduced search space.
Long et al. (2018). Conditional Adversarial Domain Adaptation.

Ratner et al. (2017). Learning to compose domain-specific transformations for data augmentation.

Hendrycks et al. (2019). AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty.
Cubuk et al. (2019). Autoaugment: Learning augmentation strategies from data.

Lim et al. (2019). Fast autoaugment.

Xie et al. (2019). Unsupervised data augmentation for consistency training

Alexander et al. (2017). Learning to Compose Domain-Specific Transformations for Data Augmentation.
Baran et al. (2019). Safe Augmentation: Learning Task-Specific Transformations from Data.

https://paperswithcode.com/task/data-augmentation/latest
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Causal Al

SRR, ST, AR

 Graphical causal inference pioneered by Judea Pearl. (2549 B X 42 & (SCM))

« Bernhard Schdkopf (2019). Causality for Machine Learning

« Bernhard Schdkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, Yoshua Bengio (2021). Towards Causal Representation Learning.

Judea Pearl Bernhard Schdkopf Yoshua Bengio



Level of Causal Modeling

» Level of causal modeling

Model Predict in 1.i.d. | Predict under distr. | Answer counter- Obtain Learn from
setting shift/intervention factual questions | physical insight data
Mechanistic/physical yes yes yes yes ?
Structural causal yes yes yes ? ?
Causal graphical yes yes no ? ?
Statistical yes no no no yes

Bernhard Schdkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal,
Yoshua Bengio (2021). Towards Causal Representation Learning.



From Statistics to Causality

The Reichenbach Principle: From Statistics to Causality.
Reichenbach clearly articulated the connection between causality and statistical
dependence.

Common Cause Principle: if two observables X and Y
are statistically dependent, then there exists a variable
Z that causally influences both and explains all the
dependence in the sense of making them independent
when conditioned on Z.

TN

© O O—6 OO

Bernhard Schdkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal,
Yoshua Bengio (2021). Towards Causal Representation Learning.
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Graphs as Joint Distribution Factorizations

Def.: 2.1.1: Markov Condition [12]

Given a graph G of nodes X with joint distribution p(a), the Markov Condi- o o
tion states that the parents pa, of every node X; make X; independent of its
non-descendants X \ de;, i.e.,

plzi | pay) = p(zs | X\ dey). (a) () (=

This condition immediately implies the following factorization of the joint

distribution ° -
"'-.._..-"f

p(x) = Hp(fﬂz' | pa,).

w

This joint factorization is the product of all variables conditioned on their parents in the graph (if any). The
core idea behind Bayesian Networks is to decompose a (potentially large) joint distribution p(x) into several
small conditional ones according to the assumed DAG relations.

SCM: Xz = fz(PAz (;3) (l — 1 cee ,_'?'1-)
Kaddour et al. (2022). Causal Machine Learning: A Survey and Open Problems.




Causal Structure Learning

observational distribution intervention distributions
P)% P}(;:;do(...)’” -
causal graph causal model counterfactuals
g e'g., SCM € P§|X=X,do(.) Ve

Observational Data

_ +  Causal Structure |
RRASURR S = Learning g Causal Graphs / Models

Domain Knowledge

Causal relations might be learned from observational, interventional data and domain
knowledge when causal variables are observed.



Spurious Relationships due to Confounding

causal

Figure 2.4: Spurious relationships due to hidden confounding in ImageNet [25, 26].
The hidden confounder animal environment E caused images of birds to include trees and boughs.
The heatmaps highlight causal and spurious associations between images X and bird labels Y.

Without further knowledge about the data-generating process, a sophisticated ML model will likely
rely on spurious associations in the training dataset, which may not occur anymore when the model
Is in production. Above figure illustrates how hidden confounding may harm classification models
In @ computer vision context.

Kaddour et al. (2022). Causal Machine Learning: A Survey and Open Problems.



Causal Representation Learning

Def.: 2.4.1: Causal Representation Learning [11]

In causal representation learning, we aim to learn a set of causal variables Z
that generate our data X, s.t. we have access to the following:

1. Causal Feature Learning: an injective mapping g : Z2 — X s.t. X = g(Z)
2. Causal Graph Discovery: a causal graph Gz among the causal variables Z

3. Causal Mechanism Learning: the generating mechanisms pg, (z; | pa(z;))
for e =1,..,dim(Z)

where pa(Z;) C {Z;};+ Ue and €; is the exogenous causal parent of Z;.

e 7

A central problem for Al and causality is causal representation learning (the discovery of
high-level causal variables from low level observations).

Kaddour et al. (2022). Causal Machine Learning: A Survey and Open Problems.



Causal Representation Learning

1

S e

Fig. 2. Illustration of the causal representation learning problem setting. Perceptual data, such as images or other high-dimensional sensor measurements,
can be thought of as entangled views of the state of an unknown causal system as described in (10). With the exception of possible task labels, none of the
variables describing the causal variables generating the system may be known. The goal of causal representation learning is to learn a representation (partially)
exposing this unknown causal structure (e.g., which variables describe the system, and their relations). As full recovery may often be unreasonable, neural
networks may map the low-level features to some high-level variables supporting causal statements relevant to a set of downstream tasks of interest. For
example, if the task is to detect the manipulable objects in a scene, the representation may separate intrinsic object properties from their pose and appearance
to achieve robustness to distribution shifts on the latter variables. Usually, we do not get labels for the high-level variables, but the properties of causal models
can serve as useful inductive biases for learning (e.g., the SMS hypothesis).

Bernhard Schdkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal,
Yoshua Bengio (2021). Towards Causal Representation Learning.



Causal Generative Modeling

latent variable model

e T . | @ e @
P A ANV

Data Latent Data

Figure 4.3: DEAR [100]: the prior pg(z) encodes the SCM among latents Z.

X. Shen, F. Liu, H. Dong, Q. Lian, Z. Chen, and T. Zhang, “Disentangled generative causal
representation learning,” arXiv preprint arXiv:2010.02637, 2020.



Future Research Within the Causal Framework

(1) Learning Non-Linear Causal Relations at Scale
I. understanding under which conditions non-linear causal relations can be learned.
[1. which training frameworks allow to best exploit the scalability of machine learning approaches.
[11. providing compelling evidence on the advantages over (noncausal) statistical representations in
terms of generalization, repurposing, and transfer of causal modules on real-world tasks.
(2) Learning Causal Variables
|.  Different high-level variables may be extracted depending on the task and affordances at hand.
1.  Understanding under which conditions causal variables can be recovered could provide insights
Into which interventions we are robust to in predictive tasks.
(3) Learning Causally Correct Models of the World and the Agent
|.  The ability to derive abstract causal variables from high-dimensional, low-level pixel
representations and then recover causal graphs is important for causal induction in real-world
reinforcement learning settings.
I1. building a causal description for both a model of the agent and the environment (world models)
should be essential for robust and versatile model-based reinforcement learning

Bernhard Schdkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal,
Yoshua Bengio (2021). Towards Causal Representation Learning.
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Logic Meets Learning

A symbolic approach is a top-down approach to Al programming. Symbolism Al models rely on
mathematical mechanisms. It builds systems based on human knowledge and behavior. This approach
relies on very human concepts such as relationships and the use of symbols to convey meaning.

The connectionist approach is a bottom-up approach. Instead of using abstract human concepts such as
relationships as models, it models the processes of the human brain. Using artificial neural networks,
connectionist models can mimic neurons and synapses. This enables Connectionism Al to process vast
amounts of data and identify key patterns based on the strength of weighted connections.



Neuro and Symbolic Al

Symbolic AI apple Neural Networks / Deep Learning
origin structure Kind i i Fully-connected 1
/ / \ \ : == W fe:luremaps - 8 il
apple tree body stem fruit 8
O [
/ / \\ o & — “Apple
0
shape size color taste (.3 Outputs
/ I I \ \ Input CW:::::.:“I Pooling 1 cmt.;t'f;nal paniga
round hand red green apple

This is how Symbolic Al might define an Apple.

Image Source: MIT-IBM Watson Al Lab



Neuro-Symbolic Al
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Neuro-Symbolic Reasoning

The model learns concepts and metaconcepts from images and two types of questions. The learned knowledge
helps visual concept learning (generalizing to unseen visual concept compositions, or to concepts with limited
visual data) and metaconcept generalization (generalizing to relations between unseen pairs of concepts.)

R L T e L L L L L L L L T T

| Object | L Visual Reasoning Question 1L Metaconcept Question (Text-Only)
i Detection Obj. 1 i i Exist(Filter(red)) MetaVerify(red, green, same kind)

| — ) ! red red same kind reen

: Feature Obj. 2 i ! ¢ r 1 | g

: Extraction H o

1 11

1 il

a. Perception Module ,

R R

MetaVerify :
(red, green, same_kind) :

P: MetaVerify(red, green, same kind)

______________________________

:'"""""""'"'""""""""""'.: Score=0.1 Score=0.9

! Q: Is there any red object? RIREEELLEE CET L L LT T SR ELEN

i Parsin o ! - . Score=0.9 (A: Yes)

! S P Exist(Filter(red)) e Exist(Filter(red)) ] !
i Q: Do red and green describe the i : i \ Max / E i
! _ same property of objects? ! | v ! !
+ _Parsing : | Score=0.9 (A: Yes) ! :
: : |

b. Semantic Parsing Module

Figure 2: The Visual Concept-Metaconcept Learner. The model comprises three modules: (a) a
perception module for extracting object-based visual representations, (b) a semantic parsing module
for recovering latent programs from natural language, and (c¢) a neuro-symbolic reasoning module
that executes the program to answer the question.

Han et al. (2019). Visual Concept-Metaconcept Learning, NeurlPS. (MIT, IBM)



Neuro-Symbolic Reasoning

Question T3l — objects Answer
What shape is the second B — Filter color (gray) > [V. Program Executor > Cube
object to collide with the - LSTM . - gray . gr :
gray object? Encoder . . A
[IRYNS —= Query_shape
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I11. Question Parser
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> @ Dynamics @
L™ L
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Video [. Video Frame Parser II. Dynamics Predictor

Figure 4: Our model includes four components: a video frame parser that generates an object-based representation
of the video frames; a question parser that turns a question into a functional program; a dynamics predictor that
extracts and predicts the dynamic scene of the video; and a symbolic program executor that runs the program on

the dynamic scene to obtain an answer.
Yi, K., Gan, C., LI, Y., Kohli, P., Wu, J., Torralba, A., & Tenenbaum, J. B. (2020). Clevrer: Collision
events for video representation and reasoning. ICLR. (Harvard, MIT, IBM, DeepMind)



Neuro-Symbolic Al

Key research directions:
« Solving symbolic problems with deep learning
» term rewriting, planning, elementary algebra, logical deduction, rule learning
« Using symbolic knowledge bases and expressive metadata to improve deep learning systems
» used a knowledge base, a knowledge graph or other structured background knowledge, that adds
further information or context to the data or system, to improve deep learning system
performances, or improve zero-shot learning
« Explainability through background knowledge
« Complex problem solving through coupling of deep learning and symbolic components
» Coupled neuro-symbolic systems
» Coupling may be through different methods, including the calling of deep learning systems
within a symbolic algorithm, or the acquisition of symbolic rules during training.

Hitzler et al. (2022). Neuro-symbolic approaches in artificial intelligence. National Science Review.
Garcez et al. (2022). Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-

Symbolic Artificial Intelligence: The State of the Art, 342, 1.
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NeuroAl

NeuroAl & A% 22 4} 52 o A T4 A8 2 SUAR 3o
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Shared characteristics:
 Interacting with the world
 Flexibility of animal behavior
* Energy efficiency

The basic ingredients of intelligence: adaptability, flexibility, and the ability to make general inferences
from sparse observations.

Zador et al. (2022). Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAl Revolution.
ArXiv 2022-10.
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