Principled Understanding of Generalization for Generative Transformer Models in Arithmetic Reasoning Tasks

Xingcheng Xu¹ Zibo Zhao^{2,3} Haipeng Zhang^{2,*} Yanqing Yang^{4,*}
¹Shanghai Al Lab ²ShanghaiTech Univ. ³Univ. of Hong Kong ⁴Fudan Univ.

ACL 2025

The 63rd Annual Meeting of the Association for Computational Linguistics

The Generalization Puzzle in Arithmetic Reasoning

- Transformer models excel at many tasks, but their generalization capabilities, even in simple arithmetic, are not fully understood.
- Empirical results from prior work reveal puzzling discrepancies.
- Our Goal: Provide a unified theoretical framework to explain these mysteries.

Table 1: Length Generalization Mysteries from Literature

PE Type	Addition	Multiplication	Modular Addition		
,,,,		•	p = 100	p = 101	
APE	Х	Х	✓	Х	
RPE	✓	×	✓	X	

Why do these inconsistencies exist?

This Paper: A Unified Theoretical Framework

- We argue that generalization behavior is determined by the interplay of three key factors:
 - 1. **Task Properties**: *e.g.*, translation invariance in addition.
 - 2. **Model Architecture**: *e.g.*, Absolute vs. Relative Positional Embeddings (APE vs. RPE).
 - 3. **Training Data Distribution**: What the model actually sees during training.

This Paper: A Unified Theoretical Framework

- We argue that generalization behavior is determined by the interplay of three key factors:
 - 1. **Task Properties**: *e.g.*, translation invariance in addition.
 - 2. **Model Architecture**: *e.g.*, Absolute vs. Relative Positional Embeddings (APE vs. RPE).
 - 3. Training Data Distribution: What the model actually sees during training.
- To analyze this, we define two types of Out-of-Distribution (OOD) generalization for a model trained on *n*-digit numbers:
 - **Downward OOD Generalization**: Testing on shorter numbers (< *n* digits).
 - **Upward OOD Generalization**: Testing on longer numbers (> n digits). This is the key challenge.

Insight 1: Addition and Translation Invariance

Task Property: Digit-wise addition is (largely) translation-invariant. The algorithm to compute $c_i = (a_i + b_i + \text{carry})$ (mod 10) is the same for any position i.

- RPE models this invariance. It learns the relative computation, enabling successful upward OOD generalization.
- **APE** learns position-specific functions. It cannot generalize to unseen positions (n + 1, n + 2, ...).
 - The model learns the function: $\hat{f}(a, b) = (a \pmod{10^n}) + (b \pmod{10^n}).$
 - This leads to failure in upward OOD generalization.

Figure 1: OOD Test Accuracy (APE).

Insight 2: Multiplication and Lack of Invariance

Task Property: Multiplication is not translation-invariant.

- The calculation for digit c_k depends on a sum over all pairs of input digits (a_i, b_j) where i + j = k + 1.
- This creates complex, non-local dependencies that grow with the position k.

Result: The algorithm is too complex for the inductive biases of standard positional encodings.

 Both APE and RPE fail to generalize upward.

Figure 2: **Multiplication Failure (RPE)**. From McLeish et al. (2024), a model trained on up to 15 digits fails on longer inputs.

Insight 3: Modular Arithmetic and Base Alignment

Explaining the "mod 100 vs. mod 101" Puzzle

Key Insight

The model's ability to generalize depends on whether the modulus p aligns with the number base (10).

Insight 3: Modular Arithmetic and Base Alignment

```
Case 1: p divides 10^k (e.g., p = 100, 50, 200)
```

- Task Property: The result only depends on the last k digits.
- $-(a+b) \pmod{100} \equiv ((a \pmod{100}) + (b \pmod{100}))$ (mod 100)
- Implication: Higher-order digits are irrelevant. The model learns to ignore them, allowing perfect upward generalization, even with APE.

Case 2: p does not divide 10^k (e.g., p = 101, 51, 151)

- Task Property: The result depends on all digits. Higher-order digits matter.
- $(a + b) \pmod{101} \not\equiv ((a \pmod{100}) + (b \pmod{100}))$ $\pmod{101}$
- **Implication**: The model (with APE, trained on n digits) learns the truncated function $\hat{f}^p(a,b) = ((a \pmod{10^n}) + (b \pmod{10^n}))$ (mod p), leading to upward generalization failure.

Quantitative Prediction: A "Smoking Gun" Result

For the hard case (modular addition where p does not divide 10^n), our theory makes a sharp, quantitative prediction for the accuracy on longer digits:

Theorem (Informal, Thm. 5 from paper)

The test accuracy for a model trained on n digits and tested on much longer digits $(n_{test} \gg n)$ is approximately:

$$Accuracy(p, n) \approx \frac{\gcd(p, 10^n)}{p}$$

	Experim	Theory					
Modulus	i = 4 (ID)	i = 5	i = 6	i = 7	i = 8	i = 9	$\gcd(p,10^4)/p$
$p = 100 \text{ (divides } 10^4\text{)}$	100	100	100	100	100	100	100%
p = 101	100	0.0	1.2	0.9	1.1	1.0	0.99%
p = 150	100	33.2	33.6	32.3	33.0	33.7	33.3%
p = 51	99.3	0.3	1.8	1.9	1.9	1.6	1.96%

The experimental results perfectly match the theoretical predictions!

Conclusion

- We proposed a **unified theoretical framework** that resolves long-standing puzzles about arithmetic generalization in Transformers.
- We showed that generalization is not magic, but emerges from the alignment between:
 - **Task structure** (e.g., symmetries like translation invariance)
 - Model inductive biases (e.g., relative positional encodings)
 - Training data distribution (which defines the function being learned)
- Our framework provides principled, quantitative, and experimentally validated explanations for OOD behavior.
- **Implications**: This work is a step towards more reliable and aligned AI, providing insights for data-efficient training and a deeper understanding of what neural networks learn.

Thank You

Paper and Code available at:

https://arxiv.org/abs/2407.17963

https://github.com/xingchengxu/ArithmeticLLM