
Principled Understanding of Generalization for Generative Transformer Models
in Arithmetic Reasoning Tasks

Xingcheng Xu1 Zibo Zhao2,3 Haipeng Zhang2,* Yanqing Yang4,*
1Shanghai AI Lab 2ShanghaiTech Univ. 3Univ. of Hong Kong 4Fudan Univ.

ACL 2025
The 63rd Annual Meeting of the Association for Computational Linguistics

1 / 10



The Generalization Puzzle in Arithmetic Reasoning

- Transformer models excel at many
tasks, but their generalization
capabilities, even in simple arithmetic,
are not fully understood.

- Empirical results from prior work
reveal puzzling discrepancies.

- Our Goal: Provide a unified
theoretical framework to explain these
mysteries.

Table 1: Length Generalization Mysteries from
Literature

PE Type Addition Multiplication Modular Addition

p = 100 p = 101

APE ✗ ✗ ✓ ✗
RPE ✓ ✗ ✓ ✗

Why do these inconsistencies exist?

2 / 10



This Paper: A Unified Theoretical Framework

- We argue that generalization behavior is determined by the interplay of three key
factors:

1. Task Properties: e.g., translation invariance in addition.
2. Model Architecture: e.g., Absolute vs. Relative Positional Embeddings (APE vs.

RPE).
3. Training Data Distribution: What the model actually sees during training.

- To analyze this, we define two types of Out-of-Distribution (OOD) generalization
for a model trained on n-digit numbers:

- Downward OOD Generalization: Testing on shorter numbers (< n digits).
- Upward OOD Generalization: Testing on longer numbers (> n digits). This is the

key challenge.

3 / 10



This Paper: A Unified Theoretical Framework

- We argue that generalization behavior is determined by the interplay of three key
factors:

1. Task Properties: e.g., translation invariance in addition.
2. Model Architecture: e.g., Absolute vs. Relative Positional Embeddings (APE vs.

RPE).
3. Training Data Distribution: What the model actually sees during training.

- To analyze this, we define two types of Out-of-Distribution (OOD) generalization
for a model trained on n-digit numbers:

- Downward OOD Generalization: Testing on shorter numbers (< n digits).
- Upward OOD Generalization: Testing on longer numbers (> n digits). This is the

key challenge.

3 / 10



Insight 1: Addition and Translation Invariance
Task Property: Digit-wise addition is
(largely) translation-invariant. The
algorithm to compute ci = (ai + bi + carry)
(mod 10) is the same for any position i .

- RPE models this invariance. It learns
the relative computation, enabling
successful upward OOD generalization.

- APE learns position-specific functions.
It cannot generalize to unseen
positions (n + 1, n + 2, ...).

- The model learns the function:
f̂ (a, b) = (a (mod 10n)) + (b
(mod 10n)).

- This leads to failure in upward OOD
generalization.

Figure 1: OOD Test Accuracy
(APE).

4 / 10



Insight 2: Multiplication and Lack of Invariance
Task Property: Multiplication is not
translation-invariant.

- The calculation for digit ck depends on a
sum over all pairs of input digits (ai , bj)
where i + j = k + 1.

- This creates complex, non-local
dependencies that grow with the position
k.

Result: The algorithm is too complex for the
inductive biases of standard positional
encodings.

- Both APE and RPE fail to generalize
upward.

Figure 2: Multiplication Failure (RPE).
From McLeish et al. (2024), a model
trained on up to 15 digits fails on longer
inputs.

5 / 10



Insight 3: Modular Arithmetic and Base Alignment

Explaining the “mod 100 vs. mod 101” Puzzle
Key Insight
The model’s ability to generalize depends on whether the modulus
p aligns with the number base (10).

6 / 10



Insight 3: Modular Arithmetic and Base Alignment
Case 1: p divides 10k (e.g.,
p = 100, 50, 200)

- Task Property: The result only
depends on the last k digits.

- (a + b) (mod 100) ≡ ((a
(mod 100)) + (b (mod 100)))
(mod 100)

- Implication: Higher-order digits are
irrelevant. The model learns to ignore
them, allowing perfect upward
generalization, even with APE.

Case 2: p does not divide 10k (e.g.,
p = 101, 51, 151)

- Task Property: The result depends
on all digits. Higher-order digits
matter.

- (a + b) (mod 101) ̸≡ ((a
(mod 100)) + (b (mod 100)))
(mod 101)

- Implication: The model (with APE,
trained on n digits) learns the
truncated function f̂ p(a, b) = ((a
(mod 10n)) + (b (mod 10n)))
(mod p), leading to upward
generalization failure.

7 / 10



Quantitative Prediction: A “Smoking Gun” Result
For the hard case (modular addition where p does not divide 10n), our theory makes a
sharp, quantitative prediction for the accuracy on longer digits:
Theorem (Informal, Thm. 5 from paper)
The test accuracy for a model trained on n digits and tested on much longer digits
(ntest ≫ n) is approximately:

Accuracy(p, n) ≈ gcd(p, 10n)
p

Experimental Test Accuracy (%) on D̃i Theory
Modulus i = 4 (ID) i = 5 i = 6 i = 7 i = 8 i = 9 gcd(p, 104)/p

p = 100 (divides 104) 100 100 100 100 100 100 100%
p = 101 100 0.0 1.2 0.9 1.1 1.0 0.99%
p = 150 100 33.2 33.6 32.3 33.0 33.7 33.3%
p = 51 99.3 0.3 1.8 1.9 1.9 1.6 1.96%

The experimental results perfectly match the theoretical predictions! 8 / 10



Conclusion

- We proposed a unified theoretical framework that resolves long-standing
puzzles about arithmetic generalization in Transformers.

- We showed that generalization is not magic, but emerges from the alignment
between:

- Task structure (e.g., symmetries like translation invariance)
- Model inductive biases (e.g., relative positional encodings)
- Training data distribution (which defines the function being learned)

- Our framework provides principled, quantitative, and experimentally validated
explanations for OOD behavior.

- Implications: This work is a step towards more reliable and aligned AI, providing
insights for data-efficient training and a deeper understanding of what neural
networks learn.

9 / 10



Thank You

Paper and Code available at:

https://arxiv.org/abs/2407.17963
https://github.com/xingchengxu/ArithmeticLLM

10 / 10

https://arxiv.org/abs/2407.17963
https://github.com/xingchengxu/ArithmeticLLM

