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The Generalization Puzzle

Transformer models show puzzling inconsistencies in arithmetic generalization. Their
ability to generalize to longer, unseen inputs (length generalization) varies dramatically
across seemingly similar tasks.

Table 1. Length Generalization Mysteries from Literature

PE Type Addition Multiplication Modular Op.
p = 100 p = 101

APE 7 7 3 7

RPE 3 7 3 7

Our Goal: Provide a unified theory to explain these phenomena.

A Unified Theoretical Framework

We propose that generalization emerges from the alignment between three factors:

Task Properties: Intrinsic structure like symmetries (e.g., translation invariance).
Model Architecture: Inductive biases from components like Positional Encodings
(PE).
Training Data Distribution: The specific function the model is trained to
approximate.

Insight 1: Addition & Translation Invariance

The digit‐wise addition algorithm is translation‐invariant—the computation is identical
for every position.

Relative PE (RPE) captures this repeating structure, enabling successful upward
generalization.
Absolute PE (APE) learns position‐specific rules and cannot generalize. It learns a
truncated function:

f̂(a, b) = (a (mod 10n)) + (b (mod 10n))

This causes upward generalization failure.

Figure 1. OOD Accuracy for Addition (APE). Models trained on D4 (red) or D5 (blue) fail on longer inputs.
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Insight 2: Multiplication & Lack of Invariance

The multiplication algorithm is not translation‐invariant. The calculation for output digit
ck involves a complex, non‐local sum over many input digit pairs. This complex struc‐
ture does not align with the inductive biases of either APE or RPE, leading to upward
generalization failure.

Figure 2. Multiplication Failure (RPE). From McLeish et al. (2024), a model trained on up to 15 digits
fails on longer inputs.

Insight 3: Modular Arithmetic & Base Alignment

The key is whether the modulus p aligns with the number base (10).

Case 1: p divides 10k (e.g., p = 100, 50)

Property: The result depends only on the last k digits.
Result: The model learns to ignore higher‐order digits, enabling perfect upward
generalization.

Case 2: p does not divide 10k (e.g., p = 101, 51)

Property: All digits matter. Higher‐order digits are crucial.
Result: The APE‐trained model learns a truncated function, causing upward
generalization failure.

The “Smoking Gun”: A Quantitative Prediction

For the hard case (modular addition, p does not divide 10n), our framework yields a
precise, falsifiable prediction for the upward OOD accuracy.

Theorem (Informal, Thm. 5)

For a model trained on n digits and tested on much longer inputs, the
accuracy is approximately:

Accuracy ≈ gcd(p, 10n)
p

Table 2. Experimental Test Accuracy (%) on D̃i vs. Theory

Experimental Test Accuracy (%) on D̃i Theory
Modulus (p) i = 4 (ID) i = 5 i = 6 i = 7 i = 8 i = 9 gcd(p, 104)/p

p = 100 100 100 100 100 100 100 100%
p = 101 100 0.0 1.2 0.9 1.1 1.0 0.99%
p = 150 100 33.2 33.6 32.3 33.0 33.7 33.3%
p = 51 99.3 0.3 1.8 1.9 1.9 1.6 1.96%

The experimental results show a stunning match with the theoretical predictions.

Conclusion

We proposed a unified theoretical framework that resolves long‐standing puzzles
about arithmetic generalization in Transformers by aligning task structure, model
biases, and data distribution.
Our framework provides principled, quantitative, and experimentally validated
explanations for OOD behavior.
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