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Abstract

Large language models (LLMs) have achieved re-
markable proficiency on solving diverse problems.
However, their generalization ability is not always
satisfying and the generalization problem is com-
mon for generative transformer models in general.
Researchers take basic mathematical tasks like n-
digit addition or multiplication as important per-
spectives for investigating their generalization be-
haviors. It is observed that when training models
on n-digit operations (e.g., additions) in which both
input operands are n-digit in length, models gen-
eralize successfully on unseen n-digit inputs (in-
distribution (ID) generalization), but fail miserably
on longer, unseen cases (out-of-distribution (OOD)
generalization). We bring this unexplained perfor-
mance drop into attention and ask whether there
is systematic OOD generalization. Towards un-
derstanding LLMs, we train various smaller lan-
guage models which may share the same under-
lying mechanism. We discover that the strong
ID generalization stems from structured represen-
tations, while behind the unsatisfying OOD perfor-
mance, the models still exhibit clear learned alge-
braic structures. Specifically, these models map un-
seen OOD inputs to outputs with learned equiva-
lence relations in the ID domain, which we call the
equivalence generalization. These findings deepen
our knowledge regarding the generalizability of
generative models including LLMs, and provide in-
sights into potential avenues for improvement.

1 Introduction
Large language models (LLMs) such as ChatGPT [Ouyang
et al., 2022], GPT-4 [OpenAI, 2023], Claude [Anthropic,
2023], PaLM [Chowdhery et al., 2023], Llama [Touvron et
al., 2023a,b] have exhibited remarkable advancements across
diverse domains, prominently in natural language processing
(NLP). The LLMs have demonstrated exceptional versatility,
showcasing profound efficacy in tackling a myriad of tasks,
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ranging from natural language challenges to code transla-
tion, mathematical reasoning, and more [Bubeck et al., 2023;
Trummer, 2022; Zong and Krishnamachari, 2023]. Although
these accomplishments are undoubtedly impressive, the gen-
eralization ability of LLMs and generative transformer mod-
els in general is not fully understood and not always satisfac-
tory in issues such as natural language understanding [Bender
et al., 2021], and mathematical reasoning [Anil et al., 2022].

Given the complexity of natural language tasks and the
black-box nature of these models, researchers view basic
mathematical tasks such as n-digit addition or multiplication
as valuable avenues for gaining insights into their generaliza-
tion behaviors [Lee et al., 2023; Anil et al., 2022]. Among
them, many have observed an interesting yet mysterious phe-
nomenon when training on n-digit operations [Brown et al.,
2020; Anil et al., 2022; Jelassi et al., 2023]. In cases where
both input operands are n-digit long, the models demonstrate
excellent generalization on unseen n-digit inputs. However,
they unexpectedly and miserably struggle when faced with
longer, unseen cases (inputs with more than n digits). For in-
stance, when trained with operations like 349+705 = 1054,
the model would perform well on unseen input 350+ 705.
But when the inputs are 1349 + 2705 which are longer in
digits, the model gives a wrong answer. This creates a
clear distinction between the former, known as in-distribution
(ID) generalization, and the latter, termed out-of-distribution
(OOD) generalization.

Seeking to bridge this generalization gap, scholars have
undertaken various efforts to enhance OOD generalization.
The techniques employed in this pursuit encompass a diverse
spectrum, including modifying position embeddings [Jelassi
et al., 2023] and attention mechanisms [Dubois et al., 2019],
fine-tuning using extended data samples, prompting and
Scratchpad [Anil et al., 2022], priming through selective
longer-length data [Jelassi et al., 2023], and even utilizing
chain-of-thought (CoT) style data [Lee et al., 2023].

In spite of these different techniques, there is still a lack
of understanding regarding the underlying mechanism. The
proposed solutions may therefore have questionable robust-
ness and become vulnerable to circumstance changes [Jelassi
et al., 2023]. Considering the evident and notably poor OOD
performance, it is natural to ask whether it stems solely from
random errors or if there is anything informative learned by
these models.
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In this paper, we bring the mystery into attention and
seek from the mechanistic perspective [Nanda and Lieberum,
2022; Zhong et al., 2023] in model interpretability. This av-
enue of study offers a macroscopic understanding of how neu-
ral networks work and has helped identify and interpret sig-
nificant phenomena such as “grokking”, also known as de-
layed generalization where models exhibit improved gener-
alization long after over-fitting their training set [Liu et al.,
2022].

When conducting experiments, it is intuitive to test models
with ID samples as well as OOD ones to make comparisons.
However, it is not feasible if we use well-known LLMs such
as GPT-4 or Llama, since we do not know the exact data that
they are trained on and therefore cannot distinguish between
ID and OOD samples. On the other hand, training LLMs is
inevitably very expensive [Brown et al., 2020]. Nonetheless,
the study by Anil et al. [2022] shows that when the model
scale increases, the model ability to generalize across differ-
ent task lengths does not improve. This suggests that the un-
derlying mechanism may be irrelevant to model scale and all
generative models may share the same mechanism. Inspired
by this and just like many other studies [Lee et al., 2023; Je-
lassi et al., 2023], we dig smaller models for insights that
could apply to LLMs. Besides, we further increase the model
scales to examine the consistency in the range of scales that
we can reach.

Tasks such as n-digit (modular) addition and multiplica-
tion are tools for investigating issues including length gen-
eralization [Anil et al., 2022] and “grokking” [Liu et al.,
2022]. Albeit simple, they offer clearer, more controlled
conditions, which can lead to more reliable observations
and interpretations. In this paper, through training a set of
small generative language models, including NanoGPT and
MinGPT [Karpathy, 2022], on n-digit addition and multipli-
cation tasks, we have made an intriguing discovery. We find
that the strong ID generalization stems from structured rep-
resentations, while the models have learned a clear algebraic
structure behind the unsatisfying OOD performance. Specif-
ically, these models map unseen OOD inputs to outputs with
equivalence relations in the ID domain, which we call the
phenomenon as equivalence generalization. The representa-
tion learning process plays a crucial role in facilitating both
ID and OOD generalization observed in these models. Ini-
tially, the representations are random. But as training pro-
gresses, the structure of the learned representations becomes
increasingly refined,equivalence generalization eventually al-
lowing the models to accurately encode every input in the
ID domain. Concurrently, these structured representations
are continuously extended to map the unseen OOD domain.
However, this extension does not occur as ideally anticipated,
resulting in the poor OOD performance. Thus, the represen-
tation learning enables powerful ID generalization, but the
continuous extrapolation of these representations to OOD in-
puts gives rise to systematic, rather than random, errors. The
mechanistic insights from the discovered patterns also high-
light the potential of these models to make use of the infor-
mation for better generalization.

As a note, we perform several robustness studies in this
work, such as changing the encoding method and varying

the training data scheme. We find that the equivalence gen-
eralization phenomenon is robust. In addition, we conduct
a detailed examination of the results across different model
scales. Notably, our results remain consistent as the model
scales increase, which strengthens our confidence that these
results might be extended to LLMs.

Our main contributions are as follows:
• Showcasing the power of mechanistic empirical eval-

uation for LLM generalization: We train small gen-
erative language models (e.g., NanoGPT, MinGPT) on
arithmetic tasks to directly investigate ID vs. OOD gen-
eralization, rather than resorting to workarounds. As a
result, our approach provides macroscopic insights. To
facilitate relevant research, we opensource our code1.

• Discovering learned structure for OOD generaliza-
tion: The discernible algebraic structure and the equiv-
alence generalization would hopefully guide robust es-
sential solutions for strong OOD generalization.

• Understanding the role of representations in gener-
alization: We show that representation learning enables
strong ID performance, while unanticipated extension of
representations to OOD inputs leads to systematic er-
rors.

2 Related Work
2.1 Generalization of Language Models in

Arithmetic
Various studies have examined the performance of
Transformer-based language models in tasks involving
arithmetic operations. Brown et al. [2020] investigated the
ability of GPT-3 to perform basic arithmetic operations
without task-specific training. Nogueira et al. [2021] ex-
plored the limitations of transformers in handling simple
arithmetic operations. Subsequent studies have further
explored the generalization capabilities of language models
in arithmetic tasks. Qian et al. [2022] discovered that
language models exhibit poor OOD generalization, and
traditional methods such as explicit positional markers and
fine-grained computation steps do not effectively address this
issue. To enhance the generalization ability of the model,
certain studies have approached the issue starting from a
microscopic perspective. For instance, Jelassi et al. [2023]
replaced absolute position embeddings with relative position
embeddings. Additionally, Dubois et al. [2019] suggested
that utilizing a location-based attention mechanism proves
effective in the Lookup Table task. Other research has
focused on the intermediate learning process of the model.
Anil et al. [2022] observed that requesting the model to
generate intermediate arithmetic steps before providing the
final output can improve generalization. Jelassi et al. [2023]
arrived at similar conclusions by decomposing the arithmetic
pipeline and improving generalization in five-digit addition
tasks. In contrast, Lee et al. [2023] presented a different
perspective, emphasizing the importance of high-quality,
instructive data that can quickly elicit arithmetic capabilities.

1The code is available at https://github.com/xingchengxu/
ExploreGPT

https://github.com/xingchengxu/ExploreGPT
https://github.com/xingchengxu/ExploreGPT
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While previous studies have primarily focused on evaluat-
ing or improving the generalization capabilities of language
models, our work has a different objective, we aim to uncover
the underlying mechanisms that govern generalization. This
explanatory goal, which seeks to understand the foundations
of generalization, has not been explicitly addressed in prior
research.

2.2 Mechanistic Interpretability
Neural network interpretation has seen numerous studies fo-
cusing on various types of models, including deep neural
networks (DNNs) [Nam et al., 2020; Barbiero et al., 2022],
convolutional neural networks (CNNs) [Yuan et al., 2019;
Akhtar and Ragavendran, 2020], and graph neural networks
(GNNs) [Yuan et al., 2020; Xuanyuan et al., 2023]. These
works demonstrate diverse microscopic interpretation tech-
niques tailored to different architectures. From a macroscopic
perspective, Liu et al. [2022] tackle delayed generalization or
“grokking” using addition and modular addition tasks. They
provide intuitive explanations using effective theories and
phase diagrams. Similarly, Zhong et al. [2023] use modu-
lar addition to mechanistically explain algorithm discovery in
neural networks. Our work contributes to this growing field
of mechanistic interpretability by offering a macroscopic ex-
planation specifically for generative Transformer models.

3 Preliminary and Experimental Setup
3.1 Model Details
We employ the model framework of GPT, a Transformer with
a decoder-only architecture comprising multiple layers and
multi-head attentions. We train several small-scale models,
namely NanoGPT and MinGPT Karpathy [2022], from ran-
dom initialization using character-level tokenization and the
conventional next-token prediction objective. The training is
conducted on basic mathematical operations, specifically ad-
dition and multiplication of integers. Detailed hyperparame-
ters are shown in Table 1.

Hyperparameter Addition Multiplication

num layer 3 6
num head 3 6
dim embd 48 192
vocab size 10 10

context window 15 19
dropout prob 0.1 0.1

optimizer AdamW AdamW
learning rate 0.0005 0.0005

betas (0.9, 0.95) (0.9, 0.95)
weight decay 0.1 0.1

grad norm clip 1.0 1.0

Table 1: Hyperparameter Information

3.2 Dataset
The dataset is structured as a concatenation of operand pairs
in a natural order, with the reversed order of the opera-
tion results. This format, demonstrated to be more con-
ducive for learning in next-token prediction models Lee et

al. [2023], offers a more approachable learning process. For
instance, consider the 3-digit addition a+b = c, represented
as “a2a1a0 + b2b1b0 = c3c2c1c0” in the standard format. By
reversing the output order of “c”, we obtain the reversed data
format “a2a1a0 + b2b1b0 = c0c1c2c3”. As we train addition
and multiplication models as distinct entities, we omit both
the operation symbols, i.e., + and ×, and the equal sign,
i.e., =, from the dataset. Subsequently, the data undergoes
character-level tokenization, resulting in a vocabulary size of
10, corresponding to digits from 0 to 9. When the context
window surpasses the requisite size for a 3-digit addition, we
pad zeros before numbers “a”, “b”, and “c”. For instance, in
the case of 3-digit addition with a context window of 15, the
addition expression “349+ 705 = 1054” will be encoded as
“0034900705450100”.

The dataset is partitioned into three distinct subsets: the
training set D1, randomly sampled from n-digit operations;
the test set D2, also drawn from n-digit operations but inten-
tionally devoid of any overlap with the training set (termed as
the ID test set); and an additional test set D3, sampled from
m-digit operations with m > n, where the value at positions
greater than n is non-zero (referred to as the OOD test set).

In the experiments, we set n = 3 and m = 5 for both addi-
tion and multiplication operations. Subsequently, from each
of the datasets D1, D2, and D3, we select 10,000 data points
as the training set for addition and 50,000 for multiplication.
We sample 10,000 for the ID test set and OOD test set, re-
spectively for both operations.

3.3 ID and OOD Domains
The data space is compartmentalized into three non-
overlapping regions: D1,D2, and D3. The union of D1 and
D2 constitutes an ID domain, whereas D3 represents an OOD
domain. The models learn a function

f : D1 ∪D2 ∪D3 → S ,

where S could be the output operation result space N, the
output probability space, or the learned representation space.

Since the model is exclusively trained on the D1 space, the
acquired knowledge concerning D2 and D3 is an extension
ofD1, albeit with an unclear underlying structure. This con-
stitutes the core aspect we seek to understand.

3.4 Equivalence Classes
When training for addition and multiplication on n-digit op-
erations, we have identified a discernible algebraic structure.
This is encapsulated in the definition of the equivalence class
[(a,b)]p for modular p, which is elucidated as follows:

[(a,b)]p := {(x,y) ∈ N2| x ≡ a(mod p), y ≡ b(mod p)}.
The ensemble of these equivalence classes is denoted as

Z2
p = Zp ×Zp = {[(a,b)]p| (a,b) ∈ N2},

where Zp = Z/pZ on non-negative integers.
To illustrate, when training a model on 3-digit addition,

we observe that the learned operation function fop : N2 →
N effectively translates to fop(a,b) = fop([(a,b)]103), which
will be stated in the result section.

In alternative training data scenarios, the definition of
equivalence classes necessitates adaptation to accommodate
specific contexts.
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4 Results
In this section, we present the key results and findings from
our experiments. These include observations on the phe-
nomenon of generalization exhibited by the models, the
learned algebraic structure, as well as the probability and rep-
resentation structures in the model’s learning process.

4.1 Generalization in OOD Domain
Figure 1 depicts the training, ID test, and OOD test accuracy
for addition and multiplication operations in domains D1,D2,
and D3 across different iterations. Panel (a) displays the train-
ing curve for addition learned by NanoGPT, while Panel (b)
showcases the curve for multiplication learned by MinGPT.
The hyperparameters employed by NanoGPT and MinGPT
can be found in Table 1.

0 2 4 6 8 10
# Iterations (K)

-0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20

Ac
cu

ra
cy

(a)

train accuracy
test accuracy
ood test accuracy

0 100 200 300 400
# Iterations (K)

-0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20

Ac
cu

ra
cy

(b)

train accuracy
test accuracy
ood test accuracy

Figure 1: Training curves in addition and multiplication operations.

By examining the figure, it becomes evident that both ad-
dition and multiplication quickly converge to a stable state,
achieving (almost) 100% accuracy in training and ID testing
in D1 and D2. However, throughout the entire training pro-
cess, the OOD test accuracy remains zero for both 3-digit ad-
dition and multiplication in D3. These results align with the
discoveries made by Jelassi et al. [2023] and Lee et al. [2023].
When training on n-digit operations with n-digit operands,
the models demonstrate excellent generalization on unseen
n-digit inputs. Yet, they perform abysmally and mysteriously
on longer, unseen cases, establishing a contrast between ID
generalization and OOD generalization. Given the strikingly
poor OOD performance, it is natural to question whether it
solely stems from random errors or if there is any meaning-
ful knowledge learned. The solution to the problem will be
presented in the subsequent subsection.

4.2 Algebraic Structure
The mysterious absence of generalizability in the OOD do-
main prompts us to delve deeper into the results. We be-
gin by examining some samples from domains D2 and D3.
These examples are illustrated in Table 2. When observing
the 3-digit addition and multiplication cases, we notice that
the trained models produce incorrect results for the 4-digit in-
stances. Strikingly, these erroneous outputs mirror the results
obtained from the 3-digit cases. It appears that the model’s
outputs peculiarly “disregard” the thousands digit of the input
numbers, irrespective of whether it is an addition or multipli-
cation operation.

To systematically analyze the behavior in the OOD domain
D3, we explore the entire two-dimensional lattice of 4-digit
integers, namely N2∩ [0,104)2. Figure 2 presents the contour

Operands Output Result Correct Result

349 + 705 1,054 1,054
1,349 + 2,705 1,054 4,054

128 × 256 32,768 32,768
3,128 × 4,256 32,768 13,312,768

Table 2: Examples on models’ outputs for addition and multiplica-
tion.
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Figure 2: Contour plots for addition and multiplication operations.

plots for the ground truth results of addition operation c= a+
b (Panel (a)) and multiplication operation c = a ·b (Panel (d)),
with the number a on the horizontal axis and the number b
on the vertical axis. These landscapes represent the expected
learning and generalization capabilities of the models on this
lattice space.

However, when we utilize our trained models to gener-
ate results based on 3-digit operations, an unmistakably dis-
tinct pattern emerges, as depicted in Panel (c) for addition
and Panel (f) for multiplication. This prompts us to inves-
tigate what structure the models have learned. We discover
that there is a modular relationship between the operands
a and b. The learned structure can be represented as c =
(a mod 103) ◦ (b mod 103), where ◦ represents either addi-
tion + or multiplication ×. The ground truth landscapes of
these functions on the 4-digit integer lattice are exhibited in
Panel (b) for addition and Panel (e) for multiplication. Vi-
sually, these two panels are identical to Panel (c) and Panel
(f), respectively. We compare the results of the operation
(a mod 103) ◦ (b mod 103) with the outputs produced by the
model. Surprisingly, they are identical across the entire space
N2 ∩ [0,104)2.

To formalize the results, we recall the definition of equiva-
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Figure 3: The probability distribution of each digit of the sequence in an addition operation c = a+b. The left side of the black dashed line
represents the input a+ b, while the right side is the result c. Figure 3(a) and Figure 3(e) represent the 349+ 705 and 128+ 256, and the
outputs are 1,054 and 384 (450100 and 483000 in actual sequence output), respectively. In the second column, we perturb the thousands digit
of a: Figure 3(b) represents 1,349+ 705, and Figure 3(f) represents 3,128+ 256. In the third column, we perturb the thousands digit of b:
Figure 3(c) represents 349+2,705, and Figure 3(g) represents 128+4,256. In the fourth column, we simultaneously perturb the thousands
digit of a and b: Figure 3(d) represents 1,349+2,705, and Figure 3(h) represents 3,128+4,256.

lence classes [(a,b)]p for modular p = 103:

[(a,b)]p := {(x,y) ∈ N2| x ≡ a(mod p), y ≡ b(mod p)}.

As [(a,b)]p is an equivalence class, we use the element in
N2 ∩ [0,103)2 = D1 ∪D2 to serve as the representative of the
class. The ensemble of these equivalence classes then forms
the space

Z2
p = Zp ×Zp = {[(a,b)]p| (a,b) ∈ N2},

where Zp = Z/pZ= {[0]p, [1]p, · · · , [p−1]p}.
The models trained on 3-digit addition and multi-

plication actually learned the operation functions fop :
Zp × Zp → N for all integer paris on N × N such that
fop(a,b) = fop([(a,b)]p) with p = 103. As an example,
fop(1349,2705) = fop([(349,705)]103). For addition, the
learned operation is f+(1349,2705) = f+([(349,705)]103) =
1054, while the learned multiplication is f×(1349,2705) =
f×([(349,705)]103) = 246045.

As a summary of the results, the models learn to generalize
the input in the OOD domain D3 by assimilating equivalence
classes in the ID domain D1 ∪D2. This result shows the lim-
itations of the models. However, this capability allows the
models to extend their learned knowledge beyond the ID do-
main D1 ∪D2 shaped by the specific training data D1. Even
though the output is wrong, it is not so bad. They have still
managed to acquire useful information and demonstrate some
level of learning.

In order to gain a deeper understanding of the training
process for Transformer models, we examine their token-
level mapping using addition as an example. Consider two
(n+1)-digit numbers, where a = an × 10n + · · ·a1 × 10+ a0
and b = bn × 10n + · · ·b1 × 10+ b0. When training a Trans-
former model using randomly sampled (n+1)-digit numbers,
the model learns an approximate mapping from the token-
level input to the true function c = a+ b = cn+1 × 10n+1 +
· · ·c1 ×10+c0. The learned approximation allows the model

to perform classification for each digit of the resulting sum c,
as follows:

fTrans(an, · · · ,a0,bn, · · · ,b0)≈ (c0,c1, · · · ,cn+1).

However, if the highest digit is completely absent from the
training data and is instead padded with zeros, the training
only guarantees learning of low n-digit addition. In other
words:

fTrans(0,an−1, · · · ,a0,0,bn−1, · · · ,b0)≈ (c0,c1, · · · ,cn,0).

This limitation may explain why it is challenging to general-
ize to higher digits when the model is trained solely on lower
digits. The absence of examples with higher digits restricts
the model’s ability to accurately predict and generalize be-
yond the low-digit addition it has been trained on.

Building upon the observed algebraic structure discussed
in the previous context of this subsection, we also know that
when testing the Transformer models on higher digits that are
non-zero, they do not significantly impact the classification
of each digit of c.

As a remark, it is important to note that when dealing with
alternative training data scenarios, the definition of equiva-
lence classes may need to be adjusted accordingly. For ex-
ample, if the training data consists exclusively of 1 and 3-
digit operations, while OOD testing involves 2 and 4-digit
numbers, or if the training data includes 3-digit numbers for
operand a and 4-digit numbers for operand b, the equivalence
classes would require redefining to account for these specific
contexts.

4.3 Probability Structure
In the preceding subsection, we examined the structured al-
gebraic patterns present in the output results. Considering
that generative Transformer models generate outputs based
on probability distributions, our model employs a greedy ap-
proach to select the output sequence with the maximum prob-
ability. We now shift our focus from algebraic structures to
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Figure 4: 3D representation structure of the first three principal components in the addition operation. Figure 4(a) to Figure 4(d) represent
the initial model, model with 14%, 51%, and 100% test accuracy, respectively.

the probability distribution of the output sequences. Our ob-
jective is to investigate the underlying factors that contribute
to the emergence of these structured algebraic patterns.

Specifically, we take two examples of 3-digit addition,
namely a+ b. We introduce perturbations to the thousands
digit of both a and b, enabling us to compare the variations
in probability distributions before and after the perturbations
occur. This comparative study will shed light on the mecha-
nisms underlying the observed structured algebraic patterns.

Figure 3 displays the probability distributions of the next
tokens in the vocabulary at each position within the sequence
for two examples. The plot showcases the probabilities be-
fore and after perturbations for each token. Remarkably, we
observe that regardless of whether we perturb a and b sep-
arately or simultaneously, the probability distribution in the
model’s output sequence remains largely unchanged.

Furthermore, we note that the digits with the highest prob-
ability in the output sequence remain consistent. This result
implies that the algebraic structure of the model expands from
Zp ×Zp to N×N. This expansion elucidates the structured
patterns depicted in Figure 2. Additionally, we conducted
a systematic examination of the entire integer lattice within
N2 ∩ [0,104)2. Notably, the results obtained from this com-
prehensive analysis exhibit robustness, further supporting our
findings.

4.4 Representation Structure
Within the probability structure, we made a significant ob-
servation that the model’s output remains insensitive to per-
turbations in the thousands digit. This probability structure
is rooted in the representation of the input sequence, which
can be expressed as follows: P = Softmax(WX), where
P ∈ [0,1]V×Linput represents the probability matrix for the next
tokens at each position, W ∈ RV×dmodel signifies the learned
weight matrix, and X ∈Rdmodel×Linput denotes the learned rep-
resentation matrix of the input. The variables V , Linput , and
dmodel correspond to the vocabulary size, input length, and
model embedding dimension, respectively.

In this subsection, we delve deeper into the influence of
these representations on the probability structure, thereby
shedding light on their role in shaping the observed algebraic
properties.

In order to explore the representations of a+ b in a sys-
tematic manner, we conducted a thorough analysis on the
two-dimensional integer lattice of 4-digit numbers. Specif-

ically, for each input sequence a + b, we obtained a high-
dimensional embedding by considering the last column of the
learned representation matrix X. Subsequently, we applied
principle component analysis (PCA) to project these embed-
dings into three dimensions.

Figure 4 showcases the four different phases of representa-
tion observed during the learning process of the model. The
visualizations in the figure depict the representations using
the first three principle components. More specifically, Fig-
ure 4(a) to 4(d) correspond to the random initial model, the
model with approximately 14%, 51%, and 100% ID test ac-
curacy, respectively. The colors in each figure correspond to
the true units digit of the resulting a+b.

The observations made from Figure 4 demonstrate that the
representations gradually transition from disorderly to struc-
tured throughout the learning process. Initially, the repre-
sentations appear random with colors mixed together (Figure
4(a)). However, as the training progresses, the structure of the
learned representations becomes increasingly refined (Figure
4(b) and (c)), ultimately leading to the development of a well-
learned representation (Figure 4(d)) where each color is sep-
arated according to its true label.

4.5 From Representation to Algebraic Structure
The findings discussed above regarding algebraic structures,
probability distributions, and representation structures also
hold true for multiplication operations.

The systematic analysis approach outlined earlier provides
a comprehensive understanding of the model’s generalization
capabilities through the assimilation of equivalence classes
present within the ID domain. The representation structures
successfully incorporate the assimilation of these equivalence
classes, thereby extending the ID structure to OOD scenarios
via the probability distribution of sequences. Consequently,
this assimilation becomes evident within the algebraic struc-
tures as well.

5 Robustness Studies
In this section, we conduct thorough empirical analyses using
various model sizes (GPT-Nano, GPT-Micro, GPT-Mini) and
training data volumes, also exploring different datasets and
encoding methods, to validate the robustness of our findings.

(1) Encoding method: For the main experiments, we
chose the reversed encoding method for n-digit addition and
multiplication, due to its faster convergence speed. Here we
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test the alternative non-reversed encoding method and obtain
consistent results (see V3 in Table 3). The convergence time,
consequently, is approximately 7.44 times longer than that of
the reversed encoding method.

(2) Scope of the dataset and training scheme: Additional
experiments with variations in the training set include setting
the rightmost digit to 0 (see V1 in Table 3), setting the tens
digit to 0 (V2), and extending the OOD test to 106 and 107

(V4). All the variations achieve 100% accuracy for ID do-
main and 0% for OOD domain. The results from V3 and
V4 in OOD completely correspond with those of the equiv-
alence class [(a,b)]1000. Similarly, V1 and V2’s OOD results
are totally consistent with these from the equivalence class
[(a,b)]10, as defined in the following equations (1) and (2),
respectively:

[(a,b)]p := {(x,y) ∈ N2 | x ≡ ⌊ a
p⌋ · p, y ≡ ⌊ b

p⌋ · p}. (1)

[(a,b)]p := {(x,y) ∈ N2 |x ≡ ⌊ a
10p ⌋ ·10p+a mod p,

y ≡ ⌊ b
10p ⌋ ·10p+b mod p}.

(2)

Versions ID OOD

V1: rightmost digit be 0 100% 0
V2: tens digit be 0 100% 0
V3: non-reverse encoding 100% 0
V4: extended OOD 100% 0

Table 3: The accuracy of ID test and OOD test in different addition
variations.

(3) Model and data scales: To explore the potential ap-
plicability of our findings to large models, we conducted a
detailed examination of outcomes across different model and
data scales. Our analysis included three distinct model scales
with increasing size: GPT-Nano, GPT-Micro, and GPT-Mini,
as defined in the code. In addition to model size, we also
evaluated the influence of varying training data sizes, specif-
ically 20k and 50k, on the task of 3-digit addition. We fo-
cused on the accuracy of OOD test samples by comparing the
model outputs with the results on (a%1000)+(b%1000). As
depicted in Figure 5, there’s a noticeable trend where, with
progressing training, the above accuracy in all experiments
approaches 100%, and the algebraic structure of equivalence
classes becomes more evident in OOD tests across different
model and data scales. Notably, even as the model scales in-
crease, our findings remain consistent. This consistency rein-
forces our confidence that these results might extend to larger
language models (LLMs).

6 Discussion
In this section, we discuss some aspects of our investigation.
Our work corroborates the findings of Anil et al. [2022] that
increasing the size of a model does not increase its ability to
generalize across tasks of different lengths. Through careful
robustness studies across a range of model sizes, we make
similar observations with respect to equivalence generaliza-
tion. This suggests that the ability of length generalization
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Figure 5: The accuracy of OOD test on equivalence for different
model and data scales

may be independent of model size, and that such findings may
be applicable to large language models.

Another point to consider is that while we discovered
equivalence classes defined by modular (a%p,b%p), the out-
put itself (a%p) + (b%p) is not modular arithmetic (a +
b)%p. This is different from the direct study of modular
arithmetic such as conducted in Jelassi et al. [2023]. More-
over, Jelassi et al. [2023] merely raises the question of why
modulo 100 works effectively while modulo 101 fails, with-
out exploring beyond the observation. In contrast, our study
highlights the consistency between the definition of equiva-
lence classes and modular arithmetic, enabling us to explain
observed differences and offer insights into the behavior of
the models.

7 Conclusion
We investigate the length generalization problem in arith-
metic tasks for generative language models. We perform
mechanistic analysis on smaller models and reveal that these
models have strong generalization within the trained distribu-
tion. However, our investigation also uncovers an underlying
algebraic structure that contributes to the models’ unsatisfac-
tory performance on OOD inputs. The models attempt to map
OOD inputs using equivalence relations within the ID domain
(we call “equivalence generalization”), leading to errors and
a lack of robustness in OOD scenarios. The representation
plays a crucial role in enabling both ID and OOD generaliza-
tion. The observation that length generalization ability does
not vary with model scale, helps us extend our conclusion to
LLMs.

Despite challenges in OOD generalization, our findings
suggest that these models hold valuable information for im-
proved generalization. However, due to the inherent subjec-
tivity of natural language, much more efforts are needed to
establish equivalence in NLP tasks for LLMs. In addition,
the finding of equivalence generalization may serve as help-
ful prior knowledge, guiding the training process of LLMs
regarding generalizability. For example, we may stop train-
ing once these equivalence classes are formed, reducing the
extensive data needed for generalizability. Besides, in domain
adaptation, people often finetune existing models, to adapt to
OOD data and similarity metrics of equivalence classes may
facilitate this process.
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based interpretability for graph neural networks via neuron
analysis. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, pages 10675–10683, 2023.



Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24)

Hao Yuan, Yongjun Chen, Xia Hu, and Shuiwang Ji. Inter-
preting deep models for text analysis via optimization and
regularization methods. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 5717–
5724, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn:
Towards model-level explanations of graph neural net-
works. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Min-
ing, pages 430–438, 2020.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob An-
dreas. The clock and the pizza: Two stories in mech-
anistic explanation of neural networks. arXiv preprint
arXiv:2306.17844, 2023.

Mingyu Zong and Bhaskar Krishnamachari. Solving math
word problems concerning systems of equations with gpt-
3. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 15972–15979, 2023.


	Introduction
	Related Work
	Generalization of Language Models in Arithmetic
	Mechanistic Interpretability

	Preliminary and Experimental Setup
	Model Details
	Dataset
	ID and OOD Domains
	Equivalence Classes

	Results
	Generalization in OOD Domain
	Algebraic Structure
	Probability Structure
	Representation Structure
	From Representation to Algebraic Structure

	Robustness Studies
	Discussion
	Conclusion

