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Suppose that γ and σ are two continuous bounded variation paths, which
take values in a finite-dimensional inner product space V . The recent papers
(J. Mach. Learn. Res. 20 (2019) 1–45) and (SIAM J. Math. Data Sci. 3 (2021)
873–899), respectively, introduced the truncated and the untruncated signa-
ture kernel of γ and σ , and showed how these concepts can be used in classi-
fication and prediction tasks involving multivariate time series. In this paper,
we introduce signature kernels K

γ,σ
φ indexed by a weight function φ, which

generalise the ordinary signature kernel. We show how K
γ,σ
φ can be inter-

preted in many examples as an average of PDE solutions, and thus we show
how it can be estimated computationally using suitable quadrature formulae.
We extend this analysis to derive closed-form formulae for expressions in-
volving the expected (Stratonovich) signature of Brownian motion. In doing
so, we articulate a novel connection between signature kernels and the notion
of the hyperbolic development of a path, which has been a broadly useful
tool in the recent analysis of the signature; see, for example, (Ann. of Math.
(2) 171 (2010) 109–167; J. Funct. Anal. 272 (2017) 2933–2955) and (Trans.
Amer. Math. Soc. 372 (2019) 585–614). As applications, we evaluate the use
of different general signature kernels as a basis for nonparametric goodness-
of-fit tests to Wiener measure on path space.

1. Introduction. Kernel methods are well-established tools in machine learning, which
are fundamental to support vector machine models for classification, nonlinear regression
and outlier detection involving small or moderate-sized data sets [4, 27, 29]. Applications are
manifold and include text classification [20], protein classification [19] as well as applica-
tions to biological sequences [32] and labelled graphs [16]. The essence of these methods is
to achieve better separation between labelled data by embedding a low-dimensional feature
space X into a higher-dimensional one H , which is commonly assumed to be a Hilbert space,
by means of a feature map ψ : X → H . The associated kernel is a function K : X × X → R

with the property that 〈ψ(x),ψ(y)〉H = K(x,y) for all x and y in X. If K is known in closed
form, then the inner products of all extended features are obtainable from the evaluation of
K at pairs of training instances in the original feature set. A typical classification problem
can be formulated as convex constrained optimisation problem for which the Lagrangian
dual involves only the inner products of pairs of enhanced features in the set of training in-
stances. Crucially, one does not need the vectors of the enhanced features themselves. This
observation—the basis of the so-called kernel trick—then allows one to enjoy the advantages
of working in a higher-dimensional feature space without some of the concomitant draw-
backs. The references [15, 25] give an extensive treatment of the core of this theory and a
survey of its applications

The selection of an effective kernel is challenging and somewhat task-dependent. When the
training data consist of sequential data such as time series, these challenges are magnified. To
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address these and other difficulties, much recent progress has been made by re-purposing the
(path) signature transform, which has decisive advantages in capturing complex interactions
between multivariate data streams. The signature originates in the fundamental work of Chen
[7] and [6]. We recall that for a continuous bounded variation path γ : [a, b] → V it is given
by the formal tensor series of iterated integrals

S(γ )a,b = 1 +
∞∑

k=1

S(γ )ka,b ∈ T ((V )) =
∞∏

k=0

V ⊗k with

S(γ )ka,b :=
∫
a<t1<t2<···<tk<b

dγt1 · · ·dγtk .

(1.1)

The soundness of capturing γ through S(γ ) is underpinned by the fact that the map γ �→
S(γ )a,b is one-to-one, up to an equivalence relation on the space of paths [14]. The signature
is invariant under reparameterisation and, therefore, by representing the path γ by the tensor
series S(γ )a,b one removes an otherwise complicating infinite-dimensional symmetry. On
the other hand, the signature captures the order of events along γ . The algebraic properties
of the signature have been developed since the foundational work of Chen; it is now well
understood that the signature transform describes the set of polynomials on unparameterised
paths, in a sense that can be made meaningful. Analytically, the signature of γ characterises
the class of responses (i.e., solutions) of all smooth differential systems, which have γ as the
input.

An important fact is the factorial decay rate of the terms in the series in (1.1). That is, given
appropriately defined norms on the tensor product spaces V ⊗k :∥∥∥∥∫

a<t1<t2<···<tk<b
dγt1 · · ·dγtk

∥∥∥∥
V ⊗k

≤ L(γ )k

k! ,

where L(γ ) denotes the length of the path over [a, b]. This allows one to define the (untrun-
cated) signature kernel of two paths γ and σ by

(1.2) Ks,t (γ, σ ) = 〈
S(γ )a,s, S(σ )a,t

〉 := 1 +
∞∑

k=1

〈
S(γ )ka,s, S(σ )ka,t

〉
k,

where 〈·, ·〉k is the canonical (Hilbert–Schmidt) inner product on V ⊗k derived from a fixed
inner product on V . In the recent paper [23], it was shown that this untruncated signature
kernel has some advantages over it truncated counterpart [17], which in some cases, lead to
greater accuracy in classification and regression tasks on benchmark data sets for multivariate
time series. The explanation for this turns on the key observation that for continuous paths
of bounded variation with almost everywhere defined derivatives, K is the unique solution of
the hyperbolic partial differential equation

(1.3)
∂2K

∂s∂t
(s, t) = K(s, t)

〈
γ ′
s , σ

′
t

〉
with K(a, ·) = K(·, a) ≡ 1.

The solution to which can be approximated using PDE solvers, thus allowing for the efficient
computation of the inner product in (1.2) and obviating the need to compute iterated integrals.

While the kernel (1.2) is useful, it is also in some respects confining. One restriction it
imposes is on the relative contributions made to the sum (1.2) by the different inner products
〈·, ·〉k . It is easy to see, for example, by scaling γ by λ = eα ∈ R to give (λγ )· = λγ·, we have

Kλγ,σ (s, t) = 1 +
∞∑

k=1

eαk 〈S(γ )ka,s, S(σ )ka,t

〉
k,
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so that the signature kernel for the family of inner products 〈·, ·〉α = ∑
k≥0 eαk〈·, ·〉k can be

obtained as above by solving the appropriately rescaled version of the PDE (1.3). The start-
ing point for this paper is to introduce methods that allow for the efficient computation of
general signature kernels with a broad class of different weightings. These will be derived
from bilinear forms on T (V ) of the type

〈·, ·〉φ =
∞∑

k=0

φ(k)〈·, ·〉k,

where φ : N∪{0} → R (or, sometimes, C), so that 〈·, ·〉φ need not even define an inner prod-
uct. For a given such φ, we term the resulting kernel the φ-signature kernel. One funda-
mental observation we take advantage of is illustrated by the following argument: assume
φ(0) = 1, and suppose that we can solve the Hamburger moment problem for the sequence
{φ(k) : k ∈ N∪{0}}, that is, we can find a probability measure μ on R such that

(1.4) φ(k) =
∫

λk dμ(λ) for all k ∈N∪{0}.
Then, under some conditions on μ, we will be able to justify the following identity:

(1.5)
〈
S(γ )a,s, S(σ )a,t

〉
φ =

∞∑
k=0

∫
λk 〈S(γ )ka,s, S(σ )ka,t

〉
k dμ(λ) =

∫
Kλγ,σ (s, t) dμ(λ).

In this case, the computation of the φ-signature kernel, that is, the one arising from 〈·, ·〉φ , will
amount to integrating scaled solutions to the PDE (1.3) in λ with respect to the measure μ.
The practicability of this approach depends on two aspects. First, one needs to be able to
solve the moment problem (1.4); there are well-known necessary and sufficient conditions
but, ideally, μ should be determined explicitly. Second, one needs to be able to approximate
accurately the integral on the right-hand side of (1.5). In this respect, one is helped by the form
of the function λ �→ Kλγ,σ (s, t), which is real analytic with a power series whose coefficients
decay at rate (n!)−2. Hence, in cases where μ has a density w given in closed form, Gaussian
quadrature provides an approximation of the form∫

Kλγ,σ (s, t) dμ(λ) ≈
m∑

i=1

wiK
λiγ,σ (s, t)

and equip us with well-described error bounds; see, for example, [30]. For these examples,
the φ-signature kernel can be approximated at the expense of m implementations of a PDE
solver.

The same principle outlined in the previous paragraph can appear in different guises. For
example, by solving the trigonometric moment problem

φ(k) =
∫ 2π

0
eikθ dμ(θ) for k ∈ Z

to find a measure μ on [0,2π ], then an analogue of (1.5) can be obtained by integrating
the complex-valued function θ �→ Kexp(iθ)γ,σ (s, t) with respect to μ. A similar observation
applies to a class of integral transforms having the form

(1.6) φ(u) =
∫
C

r(u, z) dμ(z) where r(u, z) = g(z)αu ∈ C for some α ∈ R.

This class includes the Fourier–, Laplace– and Mellin–Stieltjes transforms, for which specific
pairs (φ,μ) are of course extensively documented. We illustrate a range of examples that can
be generated using this idea in the main text.
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Extensions of the same idea apply to expected signatures. It is by now well known that,
under some conditions, the expected signature of a stochastic process characterises the law
of that process [8]. This motivates the use of expected signatures as a measure of similarity
of two laws on path space, for example, through the quantity

dφ(μ, ν) := ∥∥Eμ[
S(X)

] −E
ν[

S(X)
]∥∥

φ,

which is seen to be a maximum mean discrepancy (MMD) distance between μ and ν; see
[13] and [9]. We also have a measure of alignment of the two expected signatures of μ and ν

given by

cos∠φ(μ, ν) := 〈Eμ[S(X)],Eν[S(X)]〉φ
‖Eμ[S(X)]‖φ‖Eν[S(X)]‖φ

,

which can be interpreted as an analogue of the Pearson correlation coefficient for measures on
path space. As an application, we consider designing goodness-of-fit tests in which one wants
to understand when an observed empirical sample is drawn from a well-described baseline
distribution. A motivating example for this paper was that of the detection of radio frequency
interference (RFI) contamination in radio astronomy. In this situation, electrical signals are
collected from an array of antennas [34]. Under the null hypothesis of no RFI contamination,
the signals will reflect only the so-called thermal noise of the receiving equipment. From
this perspective, the most important reference distribution is that of white noise or, in its
integrated form, Brownian motion. Kernels have been used for similar problems previously,
albeit for the case of vector-valued data; see, for example, [10]. Proposals have been made
to put similar ideas into practice in the context of two-sample statistical tests to determine
whether two observed empirical measures on paths are drawn from the same underlying
distribution; see, for example, [9] and [18].

A formula for the expected Stratonovich signature of multivariate Brownian motion has
been known since the work of Fawcett [12] and Lyons and Victoir [21]. In the context of
the problems described above, we can take advantage of Fawcett’s formula to prove what we
believe to be a novel identity, namely that for any continuous path γ of bounded variation,
we have

(1.7)
〈
E

[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = cosh

(
ρ√

s/2γ (t)
)
.

In this formula, ργ (t) is the hyperbolic distance between the starting point and the end point
of the hyperbolic development of the path segment .γ |[0,t], and

φ(k) := 
(k/2 + 1) :=
∫ ∞

0
xk/2e−x dx.

When we realise hyperbolic space as a hyperboloid, the right-hand side of formula (1.7)
can be obtained by solving a linear ordinary differential equation. In the special case where
γ is piecewise linear, this solution of the equation is a known product of matrices. These
remarks allow one to compute quantities like dφ(W, ν), where W denotes Wiener measure
and ν is an empirical measure on bounded variation paths. We note that the primary use of
the hyperbolic development in the study of signatures to date has been in obtaining lower
bounds for the study of signature asymptotics; see [14] and [2]. In this context, the identity
(1.7) appears new, and it establishes a connection between the signature kernel and these
broader topics. It seems plausible that an additional benefit of (1.7) will be that it allows a
more analytic treatment of these other problems in a way that relies less on the geometrical
intricacies of hyperbolic space.

If φ ≡ 1, we can use Hankel’s well-known representation for the reciprocal Gamma func-
tion as the contour integral

1


(z)
= 1

2πi

∮
H

w−zew dw,
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where H is Hankel’s contour. Noting the similarity with (1.6) we can obtain the identity

(1.8)
〈
E

[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = 1

2πi

∮
C

w−1ew cosh
(
ρ√

s/2wγ (t)
)
dw,

for an appropriate contour C. To make sense of this formula, we first need to make sense
of the complex rescaling in the defining ODE for hyperbolic development. The numerical
evaluation of contour integrals of the form

∮
C f (w)ew dw is an active topic in numerical

integration (see [24]), and we use these ideas to evaluate (1.8). The same idea can be extended
to cover general φ.

In the final two sections, we consider examples, which lend themselves to being treated by
the methods outlined above. A natural question is how to select an appropriate φ for a given
task, and the related question of how to evaluate the performance of a given kernel against
an alternative. To develop this, we reverse the perspective taken above and use dφ to define a
loss function

Lφ(W,μ) := dφ(W,μ)2,

and given a finite collection of paths {γ1, . . . , γn}, we consider the problem of minimising L

over the set

Cn =
{
μ =

n∑
i=1

λiδγi
:

n∑
i=1

λi = 1, λi ≥ 0

}
.

Under some conditions on the support, this optimisation problem will have a unique solution
μ∗ which we can find. This gives us a way of evaluating the similarity of a given finitely
supported (possibly empirical) measure μ to Wiener measure under the loss function induced

by 〈·, ·〉φ by comparing Lφ(W,μ) and Lφ(W,μ∗). For example, if the ratio Lφ(W,μ∗)
Lφ(W,μ)

<

α � 1, then by an appropriate selection of the threshold α, one might decide that μ does not
resemble Wiener measure. We do not give an extensive treatment of examples, but to illustrate
how these methods introduced above might be used we consider two cases in detail:

(1) Cubature measures of degree N on Wiener space are finitely supported measures, which
matched the expected iterated integrals of Brownian motion up to and including de-
gree N . Explicit constructions are known in some cases; see [21]. By definition, these
measures will be optimal in the above sense for any kernel induced by any φ with
φ(k) = 0 for k ≥ N . One might expect that they are close to optimal for smoother φ,
which still decay sufficiently fast.

(2) We model radio frequency interference in sky-subtracted visibilities radio astronomy as
advocated by [34] and consider two idealised types of signal contamination:

• Narrow-band RFI measure across n antennas. In this case, the received signals are n

linear superpositions of independent Brownian motions with a single-frequency sinu-
soidal wave of a fixed amplitude.

• Short duration high energy bursts. As a model for this, we consider the gerneralisation
to the multivariate case of the example, originally considered in the univariate setting
in which the signal is given by Xt = Wt +ε

√
(t − U)+ for t ∈ [0,1], where (Wt)t∈[0,1]

is a Brownian motion, U is independent an uniformly distributed on [0,1] and ε > 0.
The theoretical interest in this comes from the existence of a critical parameter ε0 >

0 for which the law of X is equivalent to W if and only if ε < ε0 (see [11]), and
which therefore gives an example that falls outside the scope of traditional maximum-
likelihood-based approaches to the problem.
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2. Background on general signature kernels. Let T (V ) denote the algebra of tensor
polynomials over a finite-dimensional vector space V , which consists of elements of the form

a =
∞∑

k=0

ak, ak ∈ V ⊗k such that ak = 0 for all but finitely many k,

with the tensor product defined by

ab =
∞∑

k=0

k∑
l=0

albk−l ,

where the product V ⊗l × V ⊗(k−l) � (c, d) �→ cd ∈ V ⊗k is determined by ((v1 · · ·vl),

(vl+1 · · ·vk)) �→ v1 · · ·vk for v1, . . . , vk ∈ V . We let T ((V )) denote the space of formal tensor
series, that is, those of the form

a =
∞∑

k=0

ak for ak ∈ V ⊗k.

We let V ∗ denote the dual space of V . Then T (V ∗) is the dual space of T ((V )), and the
signature of a continuous bounded variation path γ : [a, b] → V is the family of elements
{S(γ )s,t : s ≤ t ∈ [a, b]} in T ((V )) determined by the solution to the differential equation

(2.1) dS(γ )s,u = S(γ )s,udγu on [s, t] with Ss,s = 1.

Alternatively we can view the signature as the series of iterated integrals

(2.2) S(γ )s,t = 1 +
∞∑

k=1

∫
s<t1<···<tk<t

dγt1 · · ·dγtk ∈ T ((V )).

We denote the range of the signature map by

(2.3) S = {
S(γ )s,t : γ, s < t

} ⊂ T ((V )).

We consider dual pairs (E,F ), where E and F are two linear subspaces of T ((V )). Recall
that this means that (·, ·) : E × F → R is a bilinear map such that the linear functionals
{(e, ·) : e ∈ E} ⊂ F ∗ and {(·, f ) : f ∈ F } ⊂ E∗ separate points in F and E, respectively.
We thus can identify E and F as linear subspaces of the algebraic dual spaces F ∗ and E∗,
respectively.

DEFINITION 2.1. Let (E,F ) be a dual pair. Suppose that S ⊂ E ∩ F where S denotes
the range of the signature map (2.3). Then given two continuous paths γ,σ : [a, b] → V of
bounded variation, we define the (·, ·)-signature kernel of γ and σ to be the function

[a, b] × [a, b] � (s, t) �→ (
S(γ )a,s, S(σ )a,t

) = K
γ,σ
(·,·) (s, t).

REMARK 2.2. This definition is not symmetric in general, that is, it may hold that
K

γ,σ
(·,·) �= K

σ,γ
(·,·).

For this definition to be useful, we need to demand more of the pairing (E,F ). More
exactly, we need at least that their continuous duals satisfy F ⊆ E′ and E ⊆ F ′. To go further
still, we will need that they respect some of the algebraic structure on T ((V )). The examples
we will work are derived from a fixed but arbitrary inner product 〈·, ·〉 on V . This gives rise
to the Hilbert–Schmidt inner product 〈·, ·〉k on the k-fold tensor product spaces V ⊗k in a
canonical way. Then, by taking

〈a, b〉φ :=
∞∑

k=0

φ(k)〈ak, bk〉k
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for some weight function φ : N ∪ {0} → R+ we may define Tφ((V )) to be the Hilbert space
obtained by completing T (V ) with respect to 〈·, ·〉φ . We equip Tφ((V )) with the norm topol-
ogy unless stated otherwise. It is necessary to have a condition on φ, which ensures that
S ⊂ Tφ((V )).

LEMMA 2.3. Let φ : N ∪ {0} → R+ be such that for every C > 0 the series∑
k∈N Ckφ(k)(k!)−2 is summable. Then S ⊂ Tφ((V )).

PROOF. Let {ei : i = 1, . . . , d} be any orthonormal basis of V w.r.t. 〈·, ·〉, and {e∗
I : I =

(i1, . . . , ik)} the associated dual basis on (V ∗)⊗k . Then

(2.4)
∥∥S(γ )s,t

∥∥2
φ =

∞∑
k=0

φ(k)
∑

|I |=k

[
S(γ )s,t

(
e∗
I

)]2
,

where

S(γ )s,t
(
e∗
I

) := SI (γ )s,t =
∫
s<u1<u2<···<uk<t

d〈ei1, γu1〉d〈ei2, γu2〉 · · ·d〈eik , γu〉.

We estimate the summands in (2.4) by∑
|I |=k

[
SI (γ )s,t

]2 ≤ Ls,t (γ )2k

(k!)2 where Ls,t (γ ) :=
∫ t

s
|dγu| is the length of γ.

The summability condition then ensures that (2.4) is finite. �

REMARK 2.4. The summability condition is also necessary in order that S ⊂ Tφ((V ))

because S contains paths of the form γt = tv for arbitrary v ∈ V for which

∥∥S(γ )s,t
∥∥2
φ =

∞∑
k=0

φ(k)(k!)−2‖v‖2(t − s)2k.

This prompts the following condition.

CONDITION 1. The function φ : N ∪ {0} → R+ is such that the series
∑

k∈N Ckφ(k) ×
(k!)−2 is summable for every C > 0.

The next lemma describes examples of dual pairs (E,F ) of Hilbert spaces, which fulfill
the conditions in Definition 2.1.

LEMMA 2.5. Let φ : N ∪ {0} → R+ and ψ : N ∪ {0} → R+ be functions such that φ

and ψ−1 (i.e., n �→ ψ(n)−1) satisfy the summability criterion of Condition 1. In each of the
following cases, (E,F ) is a dual pair, which satisfies F ⊆ E′ and E ⊆ F ′:

(1) E = Tφ((V )), F = Tφ((V )), (·, ·) = 〈·, ·〉φ ,
(2) E = Tφ((V )), F = Tψ−1((V )), (·, ·) = 〈·, ·〉√φ/ψ .

PROOF. For notational ease, we write Hφ for Tφ((V )). In both cases, Condition 1 ensures
that S ⊂ E ∩ F . In case 1, it is classical that H ′

φ = {〈h, ·〉φ : h ∈ Hφ}, while for case 2 we
have for h ∈ Hφ and g ∈ Hψ−1 that

∣∣〈h,g〉√φ/ψ

∣∣ =
∣∣∣∣∣

∞∑
k=0

√
φ(k)

ψ(k)
〈hk, gk〉k

∣∣∣∣∣ ≤ ‖h‖φ‖g‖ψ−1,
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hence {〈h, ·〉√φ/ψ : h ∈ Hφ} ⊆ H ′
ψ−1 . By using the fact that h is in Hφ if and only if h̃ :=√

φψh := ∑
k

√
φ(k)ψ(k)hk is in Hψ−1 , we see that

〈h, ·〉√φ/ψ = 〈h̃, ·〉ψ−1

so that {〈h, ·〉√φ/ψ : h ∈ Hφ} = {〈h, ·〉ψ−1 : h ∈ Hψ−1} = H ′
ψ−1 . �

Hereafter, we will work entirely in the case 〈Tφ((V )), Tφ((V ))〉φ in which the dual pair is
the Hilbert space Tφ((V )) with itself with pairing given by the inner product 〈·, ·〉φ . This leads
to the following definition.

DEFINITION 2.6. Let φ : N∪{0} → R+ satisfy Condition 1. Given two continuous paths
γ,σ : [a, b] → V of bounded variation, we define the φ-signature kernel of γ and σ to be
the two-parameter function K

γ,σ
φ defined by

[a, b] × [a, b] � (s, t) �→ 〈
S(γ )a,s, S(σ )a,t

〉
φ =: Kγ,σ

φ (s, t).

REMARK 2.7. It is straightforward to extend the discussion above to consider general
bilinear forms of signatures. If φ : N ∪ {0} → R, then we can define a semi-definite inner
product on T (V ) by

〈a, b〉|φ| :=
∞∑

k=0

∣∣φ(k)
∣∣〈ak, bk〉k.

Let N denote the linear subspace of T (V ) given by the kernel of semi-norm ‖ · ‖|φ|. Then we
we can complete the quotient space T (V )/N with respect to inner product 〈·, ·〉|φ| and denote
the resulting Hilbert space by T|φ|((V )). By construction, the corresponding kernel will not
depend on those terms in the signature whose levels coincide with the zeros of φ. The bilinear
form on T (V )

(2.5) 〈a, b〉φ := Bφ(a, b) :=
∞∑

k=0

φ(k)〈ak, bk〉k

extends to a continuous bilinear form on T|φ|((V )). If φ is such that |φ| satisfies Condition 1
then, as above, we define the φ-signature kernel of γ and σ to be the function K

γ,σ
φ : [a, b]×

[a, b] →R by

K
γ,σ
φ (s, t) := 〈

S(γ )a,s, S(σ )a,t

〉
φ.

This agrees with the previous definition whenever φ takes positive values.

The following shifted weight functions arise naturally when doing calculus on signature
kernels.

DEFINITION 2.8. Given a function φ : N ∪ {0} → R and k ∈ N, we define the k-shift of
φ to be the function φ+k : N∪ {0} →R determined by φ+k(·) = φ(· + k).

The next result is fundamental.

PROPOSITION 2.9. Let γ,σ : [a, b] → V be two continuous paths of bounded variation.
Assume that the function φ : N ∪ {0} → R is such that |φ| and its 1-shift |φ+1| both satisfy
Condition 1. Then the φ- and φ+1-signature kernels of γ and σ are well-defined and are
related by the two-parameter integral equation

K
γ,σ
φ (s, t) = φ(0) +

∫ s

a

∫ t

a
K

γ,σ
φ+1

(u, v)〈dγu, dσv〉.
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PROOF. Well-definedness of the two signature kernels follows from the summability
conditions. Unravelling the definitions and using (2.1) gives

K
γ,σ
φ (s, t) =

∞∑
k=0

φ(k)
∑

|I |=k

SI (γ )a,sS
I (σ )a,t

= φ(0) +
∞∑

k=1

φ(k)
∑

|I |=k−1

∫ s

a

∫ t

a
SI (γ )a,uS

I (σ )a,v〈dγu, dσv〉

= φ(0) +
∫ s

a

∫ t

a

∞∑
k=0

φ(k + 1)
∑

|I |=k

SI (γ )a,uS
I (σ )a,v〈dγu, dσv〉

= φ(0) +
∫ s

a

∫ t

a
K

γ,σ
φ+1

(s, t)〈dγu, dσv〉. �

In the special case where φ is constant, we see that the shift φ+k = φ for every k and,
therefore, K

γ,σ
φ satisfies

K
γ,σ
φ (s, t) = φ(0) +

∫ s

a

∫ t

a
K

γ,σ
φ (u, v)〈dγu, dσv〉,

and in particular, if γ and σ are differentiable and φ ≡ 1, then we write K
γ,σ
φ = Kγ,σ and

refer to it as the original signature kernel. As was first shown in [23], it solves the partial
differential equation

(2.6)
∂2Kγ,σ (s, t)

∂s∂t
= Kγ,σ (s, t)

〈
γ ′
s , σ

′
t

〉
on [a, b] × [a, b]

with boundary conditions K(a, ·) ≡ K(·, a) ≡ 1. The same paper shows how the solution to
(2.6) can be approximated numerically, and how the methodology extends to the case of rough
paths. The approximate solution can then be used to implement kernel learning methods for
classification or regression tasks based on time series as mentioned in the Introduction; see
[9, 17].

It is self-evident from Proposition 2.9 that for general φ the function will not solve a PDE
of the type (2.6). Nevertheless, we can produce examples of different φ, which do by varying
the inner product 〈·, ·〉 on the underlying vector space V , or by scaling the inner product on
T (V ) homogeneously with respect the grading on T (V ). By the latter idea, we mean that,
for θ ∈ R we can define δθ : T (V ) → T (V ) to be the unique algebra homomorphism, which
is determined by scalar multiplication by θ on V (i.e., V � a �→ θa), then we have

(2.7) δθa =
∞∑

k=0

θkak if a =
∞∑

k=0

ak ∈ T (V ).

This map can be defined in the same way on T ((V )). The following lemma explores the
properties of δθ as a map between Hilbert spaces of the form Tφ((V )) ⊂ T ((V )).

LEMMA 2.10. Suppose 0 �= θ ∈ R. Given φ : N∪{0} →R let Mθφ :N∪{0} →R denote
the function defined by (Mθφ)(n) = θnφ(n) and let δθ : T (V ) → T (V ) be the linear operator
defined by (2.7). Then:

(1) For every a, b ∈ T (V ), we have the identity

(2.8) 〈δθa, b〉φ = 〈a, δθb〉φ = 〈a, b〉Mθφ,

which extends to a, b ∈ T|Mθφ|((V )). The map δθ defines an isomorphism between the Hilbert
spaces TM

θ2 |φ|((V )) and T|φ|((V ));
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(2) For |θ | ≤ 1 and φ > 0 we have Tφ((V )) ⊆ TM
θ2φ((V )) and δθ : Tφ((V )) → Tφ((V )) is a

bounded self-adjoint linear operator with operator norm ‖δθ‖ ≤ 1;
(3) For |θ | > 1 and φ > 0, δθ is a linear operator δθ : D(δθ ) → Tφ((V )) with domain

TM
θ2φ((V )) ⊆ D(δθ ) ⊂ Tφ((V )). If furthermore φ satisfies Condition 1, then D(δθ ) is dense

in Tφ((V )) and δθ is self-adjoint.

PROOF. For item 1, the identity (2.8) follows from (2.5). The extension to the completion
follows from the fact that |〈δθa, b〉φ| ≤ ‖a‖|Mθφ|‖b‖|Mθφ|. That δθ is an isometry between the
pre-Hilbert spaces (T (V )/N, 〈·, ·〉M

θ2 |φ|) and (T (V )/N, 〈·, ·〉|φ|) follows from (2.8) and the

identity δ2
θ = δθ2 :

〈δθa, δθb〉|φ| = 〈
a, δ2

θ b
〉
|φ| = 〈a, b〉M

θ2 |φ|,

which extends to the completion TM
θ2 |φ|((V )). Surjectivity follows from the fact that

δθ (T (V )) = T (V ) for any nonzero θ . For item 2, it is readily seen that ‖a‖M
θ2φ ≤ ‖a‖φ

when |θ | ≤ 1 for all a ∈ T (V ), and hence that Tφ((V )) ⊆ TM
θ2φ((V )). By item 1, we then

have ‖δθa‖φ ≤ ‖a‖φ , which then extends to Tφ((V )). Self-adjointness follows from the iden-
tity

(2.9) 〈δθa, b〉φ =
∞∑

k=0

θkφ(k)〈ak, bk〉k = 〈a, δθb〉φ for all a, b ∈ Tφ((V )).

Finally, for item 3 we observe that TM
θ2φ((V )) is a linear subspace of Tφ((V )) and then that

δθ (TM
θ2φ((V ))) ⊆ Tφ((V )) using item 1. If φ satisfies Condition 1, then the domain of δθ

contains the linear span of the set of signatures S (recall (2.3)), which is dense in Tφ((V )).
Self-adjointness is again a consequence of (2.9). �

As an immediate corollary, we obtain the following result, which we shall use repeatedly.

COROLLARY 2.11. Suppose θ ∈ R and let φ : N ∪ {0} → R be such that |φ| satisfies
Condition 1 then

K
γ,σ
Mθφ(s, t) = K

θγ,σ
φ (s, t) = K

γ,θσ
φ (s, t)

for every (s, t) ∈ [a, b]× [a, b], where θγ and θσ denote the paths obtained by the pointwise
multiplication of θ with γ and σ , respectively. In particular if φ ≡ 1, then K

γ,σ
θφ =: K

γ,σ
θ

satisfies

K
γ,σ
θ (s, t) = 1 + θ

∫ s

a

∫ t

a
K

γ,σ
θ (s, t)〈dγu, dσv〉.

PROOF. We use the fact that δθS(γ )s,t = S(θγ )s,t and the previous lemma to observe
that

K
γ,σ
θφ (s, t) = 〈

S(γ )a,s, S(σ )a,t

〉
θφ = 〈

δθS(γ )a,s, S(σ )a,t

〉
φ = K

θγ,σ
φ (s, t).

The fact that K
θγ,σ
φ (s, t) = K

γ,θσ
φ (s, t) follows from the self-adjointness of δθ . �

3. Representing functions using weighted signature kernels. We consider the way in
which the signature kernel, and its weighted generalisations can be used to represent functions
on paths space, and we explore how this is influenced by different choices of weight functions.
To do so, we will work on the space of unparameterised paths, which we denote by C1. We
recall that this is the set of equivalence classes of continuous, bounded variation paths, which
are defined over the fixed interval [a, b], in which two paths γ and σ are equivalent if their
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signatures agree. One of the main results of [14] is that this notion of equivalence coincides
with the path-level notion of tree-like equivalence. On the space C1, the signature becomes a
well-defined and injective map from C1 into T ((V )); as in the previous section, we denote its
range by S . Where possible in this section, we suppress reference to [a, b] and write S(γ )

instead of S(γ )a,b.
Let E be a linear subspace of T ((V )), which contains the range of the signature map S

and on which there is defined an inner product 〈·, ·〉E . Then we recall [27] that there exists a
unique reproducing kernel Hilbert space (RKHS) (HE, 〈·, ·〉HE

) associated to E such that:

(1) If k[γ ] is defined by

k[γ ] : [σ ] �→ 〈
S(γ ), S(σ )

〉
E ∈ R

C1,

then the linear span of {k[γ ] : [γ ] ∈ C1} ⊂R
C1 is a dense subset of HE .

(2) 〈k[γ ], k[σ ]〉H = 〈S(γ ), S(σ )〉E for every [σ ] and [γ ] in C1.

This is the RKHS associated to the kernel kE : C1 × C1 →R given by

kE

([γ ], [σ ]) = 〈
S(γ ), S(σ )

〉
E,

the associated feature map being [γ ] �→ k([γ ], ·) = k[γ ]. To simplify the notation, we will
omit reference to equivalence classes and write kγ and k(γ, σ ) instead of k[γ ] and k([γ ], [σ ]).

In the setting of weighted signature kernels, we are interested in this construction when
E = Tφ((V )) for weight functions φ, which satisfy Condition 1. We write the induced RKHS
as Hφ and then, because Tφ((V )) contains the linear span of S as a dense subspace, we have
that

Hφ = {
kh : h ∈ Tφ((V ))

}
with kh : γ �→ 〈

h,S(γ )
〉
φ,

so that h �→ kh is the usual isomorphism between Tφ((V )) and Tφ((V ))∗ and Hφ = Tφ((V ))∗.
We see from this discussion that changing the choice of weight function leads to a possibly

different RKHS. Under quite general conditions, however, they will all share with the original
signature kernel the property of being universal.

DEFINITION 3.1. Let C1 be equipped with a topology. Let k : C1 × C1 → R be a contin-
uous, symmetric, positive definite kernel on C1. Then we say that k is universal if for every
compact subset K ⊂ C1 the linear span of the set {kγ : γ ∈ K} is dense in C(K) with respect
to the topology of uniform convergence.

REMARK 3.2. This notion is sometimes called cc-universality; see [27]. From the same
reference, we know that kφ is universal if and only if for any compact subset K ⊂ C1, the
set {kh|K : h ∈ Tφ((V ))} is dense in C(K) in the uniform topology, where kh|K denotes the
restriction of kh to K.

The argument for showing universality of a general signature kernels is an uncomplicated
variation of the one for the original signature kernel; cf. [9]. We include a proof for complete-
ness.

PROPOSITION 3.3. Let φ : N ∪ {0} → R>0 be a weight function. Let Hφ denote the
reproducing kernel Hilbert space associated φ with the corresponding kernel denoted by kφ.

Suppose that C1 is equipped with a topology such that:

(1) the weight function φ satisfies Condition 1, and
(2) the signature map S : C1 → Tφ((V )) is continuous.

Then kφ is universal in the sense of Definition 3.1.
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PROOF. The continuity and symmetry of kφ : C1 × C1 → R follows from the second
assumption and kφ(γ, σ ) = 〈S(γ ), S(σ )〉φ . Taking advantage of Remark 3.2, it suffices to
prove that {kh|K : h ∈ Tφ((V ))} is dense in C(K). To do so, we note that for any h and g in
T (V ) and γ in K it holds that〈

h,S(γ )
〉
φ

〈
g,S(γ )

〉
φ = 〈

h ��φg,S(γ )
〉
φ,

where ��φ : T (V ) × T (V ) → T (V ) is the bilinear map detemined by

h ��φg = φ(n)φ(m)

φ(n + m)
h ��g for h ∈ V ⊗n, g ∈ V ⊗m.

Note that when φ ≡ 1 this is just the usual shuffle product. From this, it follows that {kh|K :
h ∈ Tφ((V ))} contains the algebra A ={kh|K : h ∈ T (V )}. We can then conclude by using the
Stone–Weierstrass theorem, since A can be seen to contain the constant function k1|K and
also to separate points in K. �

REMARK 3.4. There are different ways to choose a topology on C1; see, for example,
[5].

Despite all the kernels in this class having RKHSs, which are dense in C(K), it is important
to appreciate that the spaces Hφ themselves will be different according to the choice of φ.
A consideration in the selection of an appropriate kernel should take into account not only
its universality, but also the efficiency with which a given RKHS can represent functions of
interest. For general signature kernels, any weight function φ : N∪{0} →R>0, which satisfies
φ ≥ 1 and Condition 1, will have an RKHS that contains the RKHS H of the original signa-
ture kernel. In principle therefore, functions which can be represented by a single element of
Hφ may have a much more complex (and only approximate) representation using elements of
H. The following example of a function on C1, which we return to later in a different setting,
illustrates this point for a specific choice of an inner product.

EXAMPLE 3.5 (Hyperbolic development map). Let V = R
d with the Euclidean inner

product. Suppose that F : Rd → Md+1(R) is the linear map into the space of d + 1 by d + 1
real matrices, which is defined by

F(x) =
(

0 x

xT 0

)
.

There exists a unique solution y = (yi,j )i,j=1,...,d+1 in Md+1(R) to the differential equation

dyt = F(dγt ) · yt started at y0 = Id+1 with t ∈ [0,1],
where · denotes matrix multiplication and Id+1 is the identity matrix in Md+1(R). The real-
valued function defined by

k : γ �→ y
d+1,d+1
1

is invariant on tree-like equivalence classes and it therefore induces a function κ : C1 →R by
κ([γ ]) = k(γ ). This function has the form

κ
([γ ]) = 〈

E
[
S(◦B)0,1

]
, S(γ )

〉
φ with φ(k) := 2k/2

(
k

2

)
! for k ∈ N∪ {0},

where S(◦B)0,1 denotes the Stratonovich signature of d-dimensional standard Brownian mo-
tion. Using the Fawcett–Victoir formula [12], we have that

A = E
[
S(◦B)0,1

] = exp

(
1

2

d∑
i=1

e2
i

)
,
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which is easily verified to be in Tφ((V )), and hence κ is in Hφ . On the other hand, κ is not
in the RKHS H because there exists no Ã in Tφ≡1((V )), which allows κ to be realised as
κ([γ ]) = 〈Ã, S(γ )〉. Indeed, if such Ã = ∑

k≥0 Ãk were to exist it would need to satisfy

Ã2k = 2kk!π2k exp

(
1

2

d∑
i=1

e2
i

)
=

(
d∑

i=1

e2
i

)k

,

where πn : T ((V )) �→ V ⊗n is the canonical projection. If this were to hold, then we would
have

∑∞
k=0 ‖Ã2k‖2 = ∞, and clearly no such Ã is in Tφ≡1((V )).

3.1. MMD distances. Given a class of functions F and a topology on C1, one can attempt
to define a notion of distance on probability measures on C1 by setting

d(μ, ν) = sup
f ∈F

∫
C1

f d(μ − ν).

If F is the unit ball of a reproducing kernel Hilbert space H of a kernel with feature map
�, then it is well known that these maximum mean discrepancy (MMD) distances have the
equivalent form

d(μ, ν) = ∥∥E
∼μ

[
�(
)

] −E�∼ν

[
�(�)

]∥∥
H ,

which is more amenable to computation. For the φ-signature kernel, this means that dφ(μ, ν)

will equal 〈
E
∼μ

[
S(
)

]
,E
∼μ

[
S(
)

]〉
φ − 2

〈
E
∼μ

[
S(
)

]
,E�∼ν

[
S(�)

]〉
φ

+ 〈
E�∼ν

[
S(
)

]
,E�∼ν

[
S(�)

]〉
φ.

(3.1)

This approach, and variants of it, have been used in the kernel learning to propose statistics
for goodness-of-fit tests; see, for example, [10]. The goal in these tasks is to use dφ to design
the rejection regions for hypothesis tests to determine whether an observed sample is drawn
from a known target distribution μ. The model we focus on, motivated by a problem in radio
astronomy, is where μ is determined by the Wiener measure W on path space. In this case, the
result of [8] ensures that dφ can distinguish two distributions in the sense that dφ(W, ν) = 0
if and only if W = ν. In practice, dφ(W, ν) will be estimated from a sample {γ1, . . . , γn}
drawn from the unknown distribution ν and for this approach to be viable, we need to be able
to compute the expression in (3.1). This involves especially handling the term〈

E
∼W
[
S(
)

]
, S(γ )

〉
φ.

In Section 6, we will show Example 3.5 can be extended to derive a closed-form formula for
this expression across a selection of weighted signature kernels.

4. Representing general signature kernels. In the previous two sections, we intro-
duced the definition of the φ-signature kernel of continuous paths γ and σ to be the function
K

γ,σ
φ (s, t). This amounts to reweighting the terms in the signature to give more or less em-

phasis to high-order terms compared to the original signature kernel, that is, 〈·, ·〉φ for φ ≡ 1.
In the present section, we will build an approach to representing φ-signature kernels in such
a way that allows for efficient computation. The same idea is presented in multiple guises
and then specialised within each case to yield particular examples. Before we present this
method for φ-signature kernels, we consider the error estimates, which arise using a naive
truncation-based approach.



598 T. CASS, T. LYONS AND X. XU

4.1. Truncated signature kernels. In this subsection, we give an error estimate of the
truncated φ-signature kernel and the full φ-signature kernel of two continuous bounded vari-
ation paths.

Let the truncated signature kernel be denoted

(4.1) K
(N)
φ (s, t) :=

N∑
k=0

φ(k)
〈
S(γ )ka,s, S(σ )ka,t

〉
k =

N∑
k=0

φ(k)
∑

|I |=k

SI (γ )a,sS
I (σ )a,t .

We have the following proposition.

PROPOSITION 4.1. Let γ,σ : [a, b] → V be two continuous paths of bounded variation.
Assume that the function φ : N ∪ {0} → R is such that |φ| satisfies Condition 1, then the
truncated signature kernel K

(N)
φ (s, t) converges to the φ-signature kernel K

γ,σ
φ (s, t) when N

goes to infinity, and the error bound is

(4.2)
∣∣Kγ,σ

φ (s, t) − K
(N)
φ (s, t)

∣∣ ≤
∞∑

k=N+1

∣∣φ(k)
∣∣(Ls(γ )Lt (σ )

)k
(k!)−2,

where Ls(γ ) is the length of the path segment γ |[a,s].

PROOF. By the Cauchy–Schwarz inequality, we have

∣∣Kγ,σ
φ (s, t) − K

(N)
φ (s, t)

∣∣ ≤
∞∑

k=N+1

∣∣φ(k)
∣∣∣∣〈S(γ )ka,s, S(σ )ka,t

〉
k

∣∣
≤

∞∑
k=N+1

∣∣φ(k)
∣∣∥∥S(γ )ka,s

∥∥
k

∥∥S(σ)ka,t

∥∥
k

=
∞∑

k=N+1

∣∣φ(k)
∣∣(Ls(γ )Lt (σ ))k

(k!)2 .

Since |φ| satisfies Condition 1, the error goes to 0 as N → ∞. �

We analyse two concrete examples that we will revisit later using other methods.

• The first example takes φ to be

(4.3) φ(k) :=
(

k

2

)
! := 


(
k

2
+ 1

)
,

where 
 denotes the Gamma fucntion. This example plays a role in Section 6 when we
consider the expected signature of Brownian motion.

• The second example is

(4.4) φ(k) = 
(m + 1)
(k + 1)


(k + m + 1)
,

where m ∈ R+. The case when m = 0, φ(k) ≡ 1 corresponds to the original signature
kernel, while m = 1 gives φ(k) = 1

k+1 , which are the sequence of moments of a random
variable that is uniformly distributed on [0,1].

The following corollary specialises the previously obtained error estimate to these cases.
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COROLLARY 4.2. Let γ,σ : [a, b] → V be two continuous paths of bounded variation.
Denote the length of the path segment γ |[a,s] as Ls(γ ).

(1) The φ-signature kernel under φ(k) = (k
2)! is well-defined and there is a constant C

such that

(4.5)
∣∣Kγ,σ

φ (s, t) − K
(N)
φ (s, t)

∣∣ ≤ C

(
e

2N + 2

)N+1/2
eN+1

(
Ls(γ )Lt (σ )

)
,

where eN+1(x) := ∑∞
k=N+1

xk

k! .

(2) The φ-signature kernel under φ(k) = 
(m+1)
(k+1)

(k+m+1)

is well-defined and the error bound
is

(4.6)
∣∣Kγ,σ

φ (s, t) − K
(N)
φ (s, t)

∣∣ ≤ 
(m + 1)

(Ls(γ )Lt (σ ))
m
2
I (N+1)
m

(
2
√

Ls(γ )Lt (σ )
)

in which I
(N+1)
m (z) := ( z

2)m
∑∞

k=N+1
( 1

4 z2)k


(k+m+1)
(k+1)
is the tail of the series defining the mod-

ified Bessel function Im(z) of the first kind of order m.

PROOF. It is easy to see that these two functions φ satisfy Condition 1, which makes
sure that the φ-signature kernels are well-defined. For the error bound (4.5), by the Stirling’s
approximation, there exist two constants C1, C2 such that

C1x
x+ 1

2 e−x ≤ x! ≤ C2x
x+ 1

2 e−x ∀x > 0.

Then we have

(k
2)!
k! ≤ C2√

2C1

(
e

2k

) k
2

and the sequence on the right-hand side is decreasing. Let C = C2√
2C1

and combine Proposi-

tion 4.1, it is easy to show the error bound (4.5).
For the error bound (4.6), since the modified Bessel function Im(2

√
Ls(γ )Lt (σ )) of the

first kind of order m is defined by the series

Im

(
2
√

Ls(γ )Lt (σ )
) = (

Ls(γ )Lt (σ )
)m

2

∞∑
k=0

(Ls(γ )Lt (σ ))k


(k + m + 1)
(k + 1)
,

the error bound follows from Proposition 4.1. �

4.2. General signature kernels by randomisation. We now show how φ-signature kernels
can be represented, under suitable integrability conditions, as the average of rescaled PDE so-
lutions whenever the sequence {φ(k) : k = 0,1, . . .} coincides with the sequence of moments
of a random variable. This representation consolidates the connection between the original
and the φ-signature kernels in these cases. The connection is captured in the following result.

PROPOSITION 4.3. Suppose π is a random variable with finite moments of all orders
and let the functions

(4.7) φ(k) = E
[
πk] and ψ(k) = E

[|π |k] ∀k ≥ 0.

We assume that ψ satisfies Condition 1. Then the φ-signature kernel K
γ,σ
φ (s, t) of continuous

bounded variation paths γ and σ is well-defined and

(4.8) K
γ,σ
φ (s, t) = Eπ

[
Kπγ,σ (s, t)

] = Eπ

[
Kγ,πσ (s, t)

]
.
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PROOF. Since |φ| satisfies Condition 1, which follows from the condition of ψ , the φ-
signature kernel K

γ,σ
φ (s, t) is well-defined. Furthermore, ψ satisfies Condition 1, by Fubini’s

theorem, we have

K
γ,σ
φ (s, t) =

∞∑
k=0

E
[
πk]〈S(γ )ka,s, S(σ )ka,t

〉
k

= E

[ ∞∑
k=0

πk 〈S(γ )ka,s, S(σ )ka,t

〉
k

]

= E

[ ∞∑
k=0

〈
S(πγ )ka,s, S(σ )ka,t

〉
k

]

= E
[
Kπγ,σ (s, t)

]
.

We conclude the proof. �

REMARK 4.4. If the random variable π has a known probability density function, the
expectation in equation (4.8) can be calculated by numerical methods such as the Monte
Carlo method or Gaussian quadrature procedure.

The corollary below gives two specialisations of this result to the cases described earlier.

COROLLARY 4.5. Let γ,σ : [a, b] → V be two continuous paths of bounded variation.
(1) The φ-signature kernel under φ(k) = ( k

2 )! satisfies

(4.9) K
γ,σ
φ (s, t) = Eπ

[
Kπ1/2γ,σ (s, t)

] = Eπ

[
Kγ,π1/2σ (s, t)

]
,

where π ∼ Exp(1) is an exponentially distributed random variable with intensity 1.
(2) The φ-signature kernel K

γ,σ
φ (s, t) under φ(k) = 
(m+1)
(k+1)


(k+m+1)
satisfies equation (4.8)

where π ∼ B(1,m) is a Beta-distributed random variable.

PROOF. For (1), we need to show that φ is all the moments of the random variable π1/2.
Since π ∼ Exp(1), we have

E
[
πk/2] =

∫ ∞
0

xk/2e−x dx = 


(
k

2
+ 1

)
= φ(k).

Equation (4.9) then follows from Theorem 4.3. For (2), since the random variable π is Beta
distributed, that is, π ∼ Beta(1,m), then the moments of π are

E
[
πk] = B(k + 1,m)

B(1,m)
= 
(k + 1)
(m + 1)


(k + m + 1)
= φ(k).

We conclude the proof. �

The motivation for the representation (4.8) is that we can design efficient and accurate
computational methods to compute the φ-signature kernels. We will give details on the Gaus-
sian quadrature methods for the φ-signature kernel in Section 5 below.
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4.3. General signature kernels by Fourier series. We now extend the earlier discussion
so that φ : Z→ C is a complex-valued function. We consider the blinear form defined by the
two-sided summation

〈a, b〉φ := Bφ(a, b) :=
∞∑

k=−∞
φ(k)〈a|k|, b|k|〉|k|,

and the corresponding function

K
γ,σ
φ (s, t) := 〈

S(γ )a,s, S(σ )a,t

〉
φ.

If the coefficients are the Fourier coefficients of some known periodic function f then the
idea of the previous proposition can be applied to again derive a representation of K

γ,σ
φ . The

following result describes the needed conditions.

PROPOSITION 4.6. Suppose that γ and σ are continuous paths of bounded 1-variation.
Let φ : Z → C be as above, and write φk := φ(k). Assume that {φk : k ∈ N} are the Fourier
coefficients of some bounded integrable function f : (−π,π) → C, that is,

f =
∞∑

k=−∞
φke

ikx.

Then for all (s, t) ∈ [a, b] × [a, b], we have

(4.10) K
γ,σ
φ (s, t) = 1

2π

∫ π

−π
K̄γ,σ

x (s, t)f (x) dx − φ0,

where

K̄γ,σ
x (s, t) := Kexp(−ix)γ,σ (s, t) + Kexp(ix)γ,σ (s, t).

PROOF. Fixing (s, t), we have for every x ∈ (−π,π) that

Kexp(±ix)γ,σ (s, t) =
∞∑

k=0

e±ikx(x)
〈
S(γ )ka,s, S(σ )ka,t

〉
k =:

∞∑
k=0

e±ikx(x)ck.

The basic estimate |ck| ≤ Lk
γ Lk

σ /(k!)2, where Lγ is the length of the path γ , ensures that∑N
k=0 cke

±ikx(·)f (·) converges uniformly to the series
∑∞

k=0 cke
±ikx(·)f (·), and hence

1

2π

∫ π

−π
Kexp(±ix)γ,σ (s, t)f (x) dx = 1

2π

∞∑
k=0

ck

∫ π

−π
e±ikx(x)f (x) dx =

∞∑
k=0

ckφ∓k.

It follows that

1

2π

∫ π

−π

[
Kexp(−ix)γ,σ (s, t) + Kexp(ix)γ,σ (s, t)

]
f (x) dx

=
∞∑

k=−∞
c|k|φk + c0φ0 = K

γ,σ
φ (s, t) + φ0,

as required. �

REMARK 4.7. Note that RK
γ,σ
x (s, t) := ReKexp(ix)γ,σ (s, t) is given by

RKγ,σ
x (s, t) =

∞∑
k=0

cos kx
〈
S(γ )ka,s, S(σ )ka,t

〉
k.
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Together with IK
γ,σ
x (s, t) := ImKexp(ix)γ,σ (s, t), it solves the 2-dimensional PDE:

∂2

∂s∂t

(RKγ,σ
x (s, t)

IKγ,σ
x (s, t)

)
=

(
cosx − sinx

sinx cosx

)(RKγ,σ
x (s, t)

IKγ,σ
x (s, t)

) 〈
γ ′
s , σ

′
t

〉
.

COROLLARY 4.8. Special cases of the above result include:

(1) If φk = 0 for k < 0, then

K
γ,σ
φ (s, t) = 1

2π

∫ π

−π
Kexp(−ix)γ,σ (s, t)f (x) dx.

(2) (Real Fourier series) Suppose

f = a0 +
∞∑

k=1

akck +
∞∑

k=1

bksk where ck(·) := cos(k·), sk(·) := sin(k·)

with {ak} and {bk} real sequences. If φ(k) = ak so that

(4.11) 〈p,q〉φ :=
∞∑

k=0

ak〈pk, qk〉k,

then

K
γ,σ
φ (s, t) = 1

π

∫ π

−π
RKγ,σ

x (s, t)f (x) dx − a0.

In using this result, the function f should be chosen that the integral can easily approxi-
mated numerically.

EXAMPLE 4.9. The following simple examples illustrate the scope of these ideas:

(1) The function f (x) = x2 has the Fourier series f = ∑∞
k=0 φkck on [−π,π] where

φk = 4(−1)k

k2 , φ0 = π2

3
,

and we obtain the identity

π2

3
+

∞∑
k=1

4(−1)k

k2

〈
S(γ )ka,s, S(σ )ka,t

〉
k = 1

2π

∫ π

−π
RKγ,σ

x (s, t)x2 dx.

(2) The periodic function f (x) = ecosx cos(sinx) has Fourier series

f (x) =
∞∑

k=0

1

k! cos(kx)

and so

1 +
∞∑

k=0

1

k!
〈
S(γ )ka,s, S(σ )ka,t

〉
k = 1

π

∫ π

−π
RKγ,σ

x (s, t)ecosx cos(sinx)dx.

(3) The Jacobi theta function is the 1-periodic function

θ(z; τ) = 1 + 2
∞∑

k=1

eiπτk2
cos(2πkz),

hence if we define f (x;u) := θ( x
2π

; iu
π

), then f (·;u) = 1 + ∑∞
k=1 e−uk2

ck and
∞∑

k=0

e−uk2 〈
S(γ )ka,s, S(σ )ka,t

〉
k = 1

π

∫ π

−π
RKγ,σ

x (s, t)f (x;u)dx − 1.
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4.4. General signature kernels by integral transforms. The main idea of the previous
subsection was to look for a function f with Fourier series

∑
k∈Z φ(k)eikx . If such a function

can be found then, in principle, we can calculate the bilinear form Bφ evaluated at a pair of
signatures. The difficulty with this approach is that such a function may not exist in some
cases of interest, for example, φ(k) = k−1/2, φ(k) = k!, etc. To simplify, we forego the two-
sided summation and re-define

〈a, b〉φ := Bφ(a, b) :=
∞∑

k=0

φ(k)〈ak, bk〉k,

where φ : R→ C is now defined on R. To capture more generally some of the structure used
above, we assume now that φ is the integral of a function r : R×R →C against a finite
signed Borel measure μ on R such that

(4.12) φ(u) =
∫
C

= g(z)αuμ(dz) for α ∈ R.

The pairs (φ,μ) related in this way include well-known examples of integral transforms.

EXAMPLE 4.10. We will consider three principal examples:

(1) Fourier–Stieltjes transform: C = R, g(z) = e−2πiz, α = 1, that is, φ(u) = μ̂(u) :=∫
R

e−2πiuzμ(dz);
(2) Laplace–Stieltjes transform: C = (0,∞), g(z) = e−z, α = 1, that is, φ(u) = μ̃(u) :=∫ ∞

0 e−uzμ(dz);
(3) Mellin–Stieltjes transform: C = (0,∞), g(z) = z, α = 1, that is, φ(u) = μMel(u +

1) = ∫ ∞
0 zuμ(dz), Reu > −1.

In the general case, we can expect—under reasonable assumptions—that the integral rep-
resentation can be used to justify the calculation〈

S(γ )a,s, S(σ )a,t

〉
φ =

∞∑
k=0

∫
C

g(z)αkμ(dz)
〈
S(γ )ka,s, S(σ )ka,t

〉
k

=
∫
C

∞∑
k=0

〈
S
(
g(z)αγ

)k
a,s, S(σ )ka,t

〉
kμ(dz)

=
∫
C

Kg(z)αγ,σ (s, t)μ(dz),

(4.13)

again allowing us to reduce the calculation of the bilinear form to a weighted integral over
PDE solutions. On this occasion, integration is w.r.t. the measure μ and the rescaling is de-
termined by the form of the kernel function r in the integral transform relating μ and φ.

THEOREM 4.11. Let μ be a finite signed Borel measure μ on R. Suppose that φ :R→ C

is such that

φ(k) =
∫
C

g(z)αkμ(dz) ∈ C for all k ∈ N∪ {0}
for a function g :C→ C. Let

γ : [a, b] → V and σ : [a, b] → V

be continuous paths of bounded 1-variation with signatures S(γ ) and S(σ), respectively. For
every (s, t) ∈ [a, b] × [a, b] and k ∈ N∪{0}, define

ak(s, t) := 〈
S(γ )ka,s, S(σ )ka,t

〉
k.

Assume for every (s, t) ∈ [a, b] × [a, b] that:
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(1) the integral
∫
C |g(z)αk)||μ(dz)| < ∞, and

(2) the series
∑

k ak(s, t)
∫
C |g(z)αk)||μ(dz)| converges absolutely,

then

(4.14)
〈
S(γ )a,s, S(σ )a,t

〉
φ =

∫
C

Kg(z)αγ,σ (s, t)μ(dz).

REMARK 4.12. Sufficient for item 2 is that
∑

k Ak(k!)−2 ∫
C |hk(z; s, t)||dz| converges

for every A > 0.

PROOF. Assumptions 1 and 2 above ensure that Fubini’s theorem can be applied to give
∞∑

k=0

ak(s, t)

∫
C

g(z)αkμ(dz) =
∫
C

∞∑
k=0

ak(s, t)g(z)αkμ(dz),

which can be seen to be the same as (4.14). �

COROLLARY 4.13. For each of the three integral transforms in Example 4.10 satisfying
assumption 1 and 2 in the above theorem, we have (4.14).

In a similar way we have the following results once again.

COROLLARY 4.14. Let π be a complex-valued random variable with finite moments of
all orders and

φ(k) = E
[
πk] and ψ(k) = E

[|π |k] for all k ∈ N∪ {0}
such that ψ satisfies Condition 1. Then

K
γ,σ
φ (s, t) = Eπ

[
Kπγ,σ (s, t)

] = Eπ

[
Kγ,πσ (s, t)

]
.

PROOF. Let F be the distribution function of π . Apply Theorem 4.11 with μ = dF and
r(u, z) = zu. �

EXAMPLE 4.15. These examples illustrate these results:

(1) For any β > −1, the function φ(u) = 
(u + β + 1) = ∫ ∞
0 xuxβe−x dx is the Mellin

transform of xβe−x . Therefore, we have
∞∑

k=0


(k + β + 1)
〈
S(γ )ka,s, S(σ )ka,t

〉
k =

∫ ∞
0

Kxγ,σ (s, t)xβe−x dx.

(2) Suppose π is a random variable, the expectation can be computed in the following cases:

(a) if π is uniformly distributed on [0,1], then it equals
∞∑

k=0

1

k + 1

〈
S(γ )ka,s, S(σ )ka,t

〉
k =

∫ 1

0
Kxγ,σ (s, t) dx;

(b) if π has the Arcsine(−1,1)-distribution, that is, Fπ(x) = 2
π

arcsin(
√

1+x
2 ), then

(4.15)
∞∑

k=0

2k−1∏
r=0

2r + 1

2r + 2

〈
S(γ )ka,s, S(σ )ka,t

〉
k = 1

π

∫ 1

−1

Kxγ,σ (s, t)√
1 − x2

dx;

(c) if π has the Beta(α,β)-distribution, then
∞∑

k=0

k−1∏
r=0

α + β

α + β + r

〈
S(γ )ka,s, S(σ )ka,t

〉
k = 1

B(α,β)

∫ 1

0
Kxγ,σ (s, t)xα−1(1 − x)β−1 dx.
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5. Computing general signature kernels. The usefulness of the formulae in the last
section depends on one being able to numerically approximate integrals such as∫ b

a
f (x)w(x)dx,

where [a, b] ⊆ R, w ∈ L1((a, b)) is a weight function, which for the moment we assume to
be positive. In the examples considered, the function f to be integrated will be a scaling of
the signature kernel PDE, and typically we will have

f (x) = Kxγ,σ (s, t).

A classical approach to such approximations is to use a Gaussian quadrature rule; see, for
example, [30].

For a general weight function w, suppose that P ={pn : n ∈ N ∪ {0}} is a system of or-
thogonal polynomials w.r.t. the weight function w over (a, b); that is, deg(pn) = n and
〈pn,pm〉w = ∫ b

a pmpnw dx = 0 for n �= m. Then the quadrature points xk , k = 0,1, . . . , n

are the zeros of the polynomial pn+1, the corresponding quadrature weights are

wk :=
∫ b

a
w(x)

n∏
i=0,i �=k

(
x − xi

xk − xi

)2
dx

and the quadrature rule is the approximation∫ b

a
f (x)w(x)dx ≈

n∑
k=0

wkf (xk).

The approximation is exact if f is a polynomial with deg(f ) ≤ 2n + 1. If f is assumed to be
C2n+2, then the error in the quadrature rule can be approximated by the basic estimate [30],

(5.1)

∣∣∣∣∣
∫ b

a
f (x)w(x)dx −

n∑
k=0

wkf (xk)

∣∣∣∣∣ ≤ f (2n+2)(ξ)

(2n + 2)!
∫ b

a
w(x)πn+1(x)2 dx,

where ξ ∈ (a, b) and

πn+1(x) =
n∏

i=0

(x − xi)

is the monic poynomial obtained by dividing pn+1 by its leading coefficient. In view of the
bound (5.1), it is useful to have estimates on the derivatives of the function x �→ Kxγ,σ (s, t).
To this end, we have the following.

LEMMA 5.1. Define f (x) := Kxγ,σ (s, t) for x ∈ R. Then f is infinitely differentiable
and, for every k ∈N, its kth derivative is given by

(5.2) f (k)(x) =
∞∑
l=0

xl (l + k)!
l!

〈
S(γ )l+k

a,s , S(σ )l+k
a,t

〉
l+k.

In particular, we have the estimate

(5.3)
∣∣f (k)(x)

∣∣ ≤ Ls(γ )k/2Lt(σ )k/2

|x|k/2 Ik

(
2
√

|x|Ls(γ )Lt (σ )
)
,

where Ls(γ ) is the length of the path segment γ |[a,s] and Ik is the modified Bessel function
of the first kind of order k.
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PROOF. Differentiablity is a simple argument on term-by-term differentiation of power
series. Applying this argument k times results in the formula (5.2). The bound (5.3) can be
obtained by the elementary estimate∣∣f (k)(x)

∣∣ ≤
∞∑
l=0

|x|l (l + k)!
l!

Ls(γ )l+kLt (σ )l+k

(l + k)!2

= Ls(γ )k/2Lt(σ )k/2

|x|k/2 Ik

(
2
√

|x|Ls(γ )Lt (σ )
)
. �

REMARK 5.2. For any x ∈ R, k ∈ N, it is easy to derive from (5.2) the crude estimate∣∣f (k)(x)
∣∣ ≤ Ls(γ )kLt (σ )k

k! exp
(|x|Ls(γ )Lt (σ )

)
,

which could be refined, for example, by considering estimate on ratios of Bessel functions
Ik+1/Ik .

Putting things together, we obtain the following estimate for the quadrature error.

PROPOSITION 5.3. Let P ={pn : n ∈ N ∪ {0}} be a system of orthogonal polynomials
with respect to a continuous positive weight function w ∈ L1(a, b). For every n, the error in
the associated quadrature formula satisfies the estimate∣∣∣∣∣

∫ b

a
Kxγ,σ (s, t)w(x) dx −

n∑
k=0

wkK
xkγ,σ (s, t)

∣∣∣∣∣
≤ Ls(γ )2n+2Lt(σ )2n+2 exp(|ξ |Ls(γ )Lt (σ ))

[(2n + 2)!]2

∫ b

a
w(x)πn+1(x)2 dx.

EXAMPLE 5.4. Let (a, b) = (−1,1), w(x) = 1
π

1√
1−x2

as in the earlier example (4.15).

Then P can be the family of Chebyshev polynomials of the first kind pn = Tn in which case
(see [1]) ∫ b

a
w(x)πn+1(x)2 dx = 1

22n+1 .

Therefore, if γ and σ have lengths at most L the degree n + 1 quadrature rule results in an
error at most

Rn = L4n+4 exp(L2)

22n+1[(2n + 2)!]2 .

To give some idea of the number of points needed (and hence the number of PDEs solutions
needed), if L = 10 then R25 = e−8.6017, R30 = e−50.492, whereas if L = 100 then R1050 =
e−49.497. The ratio

Rn+1

Rn

= L4

4(2n + 4)2(2n + 3)2 ,

articulates the tradeoff between the length L and degree of the quadrature rule that is used.

EXAMPLE 5.5. The φ-signature kernel K
γ,σ
φ (s, t) for φ(k) = (k

2)! is studied in Corol-

lary 4.5. In this case, the random variable π is exponentially distributed, hence π1/2 is
Rayleigh distributed with density w(x) = 2xe−x2

, x > 0. We have

(5.4) K
γ,σ
φ (s, t) = E

[
Kπ1/2γ,σ (s, t)

] =
∫ ∞

0
2Kxγ,σ (s, t)xe−x2

dx.
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Let f (x) = Kxγ,σ (s, t), then

K
γ,σ
φ (s, t) = 2

∫ ∞
0

f (x)xe−x2
dx,

which can be numerically calculated by the classical Gaussian quadrature formula (see, e.g.,
[26, 28]), ∫ ∞

0
f (x)xe−x2

dx ≈
n∑

k=0

wkf (xk).

The abscissae xk , k = 0,1, . . . , n are the roots of a (n+1)-th degree polynomial pn+1(x) and
wk are the weights of quadrature. Explicit values are given in [26, 28].

5.1. Quadrature versus truncation: A comparison. We compare the relative accuracy of
truncation-based methods with hybrid quadrature-PDE based methods. We do not discuss the
complexity-based performance of the methods, although this question is important, too, and
is the subject of ongoing research. As the quadrature error depends on the weight function
defining the kernel, a separate analysis is needed for each kernel. We illustrate the comparison
in the case where setting φ(k) = (k + 1)−1; that is, we consider

(5.5)
〈
S(γ ), S(σ )

〉
φ =

∞∑
k=0

1

k + 1

〈
Sk(γ ), Sk(σ )

〉
k.

As the earlier estimate shows, the quadrature error depend on the lengths of the paths γ and σ .
We therefore assume that the maximum of the lengths of the two paths γ and σ are bounded
by L when, by the estimate in Proposition 4.1, the truncation error will be bounded by

(5.6) TE(m,L) :=
∞∑

k=m+1

L2k

(k + 1)!k! .

For this choice of weight function, the quadrature error is bounded by (see p. 888 of [1])

QE(n,L) := [(n + 1)!]4

(2n + 3)[(2n + 2)!]3 L2n+2I2n+2(2L),

where we have made use of the estimates for the derivatives of the scaled signature kernel
in Lemma 5.1. To obtain a comparison, we fix L and a level of accuracy ε, and then find
the minimal m and n, respectively, for which TE(m,L) ≤ ε and QE(n,L) ≤ ε. In the plot
shown in Figure 1 below, we take ε = 10−6 and consider L in the range [5,120]. The func-
tion QE(n,L) is evaluated numerically using the package scipy.special. To evaluate
TE(m,L), the series (5.6) is estimated by truncation: simple calculus show that the sum-
mands are maximised when k ≈ L after which the series rapid converges, for example, for
r > e,

∞∑
k=rL

L2k

(k + 1)!k! <

∞∑
k=rL

(
Le

k

)2k

≤
(

e

r

)2rL r

r − e
,

so that TE(m,L) can be well approximated by retaining relatively few summands. The plot
below is computed by setting rL = 2000 so that 16.667 ≤ r ≤ 400, and the truncation of the
series at rL gives a more than adequate estimate for TE(m,L) for the range of L considered
and the choice of error tolerance ε.

We see qualitatively that the higher degrees of truncation/quadrature are needed as L in-
creases, that this increase is approximately linear in L over the range considered, and that the
number of terms needed using the truncation-based approach increases at a faster rate than
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FIG. 1. The minimum level of truncation and minimum-degree quadrature formula needed to achieve accuracy
of 10−6 when computing the weighted signature kernel (5.5) for two paths, plotted against the maximum length
of those paths.

the degree of the quadrature formula. This observation remains stable over different choices
of ε. The calculation of high-order iterated integrals is computationally nontrivial, and be-
comes increasingly expensive as the dimension d of the underlying state space increases.
This provides evidence that the hydrid quadrature-signature PDE approach can be a useful
alternative, even for moderate length paths (L ≈ 100) such as those seen in applications (see
below), where truncation-based schemes may be unfeasible.

5.2. Weighted signature kernels for time-series classification. To illustrate the use of
weighted signature kernels, we apply them to the challenge of multivariate time series classi-
fication using the UEA data sets, which are available at https://timeseriesclassification.com/.
We use the support vector classifier (SVC) as [23, 33], and compare accuracy-based perfor-
mance under the same SVC settings (time-series preprocessing, hyperparameter selection,
etc.) for the original signature kernel, the factorially-weighted signature kernel (see Exam-
ple 5.5) and Beta-weighted signature kernel (here, we use m = 1 for the Beta weights). All
signature kernels are computed using the PDE method of [23]. For the weighted signature
kernels this is combined, in the case of the factorially-weighted signature kernel, with the use
of a degree 16 quadrature rule (n = 15 in Example 5.5) with the weights and abscissae given
on page 316, Table IIb, of [26]. For the Beta-weighted kernel, the PDE method is combined
with the representation formula (4.8), the expectation being approximated using 21 equally-
spaced points from the interval [0,1]. Table 1 shows the performance of the SVC with the
different kernels. We run the experiments both with and without augmenting the time series
by adding an extra time coordinate. The numbers in bold typeface indicate in which experi-
ments the test accuracy of the SVC using the factorially- or Beta-weighted signature kernel
outperforms the original signature kernel.

6. Expected general signature kernels. We develop our earlier discussion to consider
how φ-signature kernels can be combined with the notion of expected signatures to compare
the laws of two stochastic processes. In the examples that we study, one of the measures
will be Wiener’s measure, which we denote by W and the other will be denote by μ. The
measure μ will typically discrete and supported on bounded variation paths. Our aim will be
to compute

K
W,μ
φ (s, t) = 〈

EX∼W
[
S(X)0,1

]
,EX∼μ

[
S(X)0,1

]〉
φ,

where S(X) denotes the Stratonovich signature of X. We will sometimes write E[S(◦B)0,s],
for a Brownian motion B , in place of EX∼W [S(X)0,1] to emphasise the fact that the signature
is constructed via Stratonvich calculus.

https://timeseriesclassification.com/
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TABLE 1
Test set classification accuracy (in %) on UEA multivariate time-series data sets

Data sets

Without add-time operation With add-time operation

Original Factorial Beta(1) Original Factorial Beta(1)

ArticularyWordRecognition 81.3 80 79.7 94.3 92.3 93.3
BasicMotions 87.5 90 100 97.5 97.5 95
Cricket 62.5 58.3 75 84.7 81.9 83.3
Epilepsy 90.6 88.4 90.6 92 92 93.5
ERing 75.6 78.1 74.4 80 87.4 86.3
FingerMovements 44 47 45 49 51 57
Libras 48.9 50 57.2 66.1 65 68.3
NATOPS 73.9 73.3 78.9 90.6 88.3 91.7
RacketSports 69.1 68.4 67.1 78.9 78.3 79.6
SelfRegulationSCP1 50.5 50.5 51.5 70.3 71 68.6
UWaveGestureLibrary 74.1 73.4 76.9 71.9 70.3 70.6

As an initial step, we assume that γ is a fixed (deterministic) continuous path of bounded
variation. We look to obtain formula for the φ-signature kernel of the expected Stratonovich
signature of Brownian motion and γ , that is,

K
W,γ
φ (s, t) := 〈

E
[
S(◦B)0,s

]
, S(γ )0,t

〉
φ.

A key idea to doing this will be to use notion of the hyperbolic development of γ , which
has been used in earlier study of the signature and, in this context, was initiated by [14]. We
summarise the essential background in the section below.

6.1. Hyperbolic development. We gather the basic notation and results. Readers seeking
further details can consult [2, 14, 22]. We let Hd denote d-dimensional hyperbolic space
realised as the hyperboloid {x ∈R

d+1 : x ∗ x = −1, xd+1 > 0} endowed with the Minkowski
product

x ∗ y =
d∑

i=1

xiyi − xd+1yd+1 for x = (x1, . . . , xd, xd+1) ∈ R
d+1.

It is well known that this defines a Riemannian metric when restricted to the tangent bundle
of Hd . We let dHd denote the associated Riemannian distance function and recall that

(6.1) cosh dHd(x, y) = −x ∗ y;
see, for example, [3]. Define the linear map F : Cd → Md+1(C) into the space of d + 1 by
d + 1 matrices over C by

(6.2) F : x →
(

0 x

xT 0

)
.

Then if V is a real inner product space of dimension d and γ : [a, b] → V is continuous path
of bounded variation then, by fixing an orthonormal basis of V , and writing γ in this basis
as γ = (γ 1, . . . , γ d) we can uniquely solve the differential equation with linear vector fields
given by

(6.3) d
s,t (u) = F(dγu)
s,t (u), u ∈ [s, t] ⊂ [a, b], with 
s,t (s) = I = Id+1.
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In this case, the map γ |[s,t] �→ 
s,t (·) takes a path segment in V into one in the isometry
group of Hd . The resulting 
(s, t)(·) is called the Cartan Development of the path segment
γ |[s,t]. It satisfies the multiplicative property

(6.4) 
(u, t)(t)
(s, u)(u) = 
(s, t)(t), s ≤ u ≤ t.

To simplify things, we suppress the dependence on the interval and write 
(t) := 
γ (t) :=

(a, b)(t) for t ∈ [a, b]. It is elementary to represent 
 as the convergent series

(6.5) 
(t) = I +
∞∑

n=1

∫
a<t1<···<tn<t

F (dγt1) · · ·F(dγtn).

Then letting o = (0, . . . ,0,1)T ∈ H
d , we define σ(t) := 
(t)o to be the hyperbolic develop-

ment of the path γ onto H
d , and we write σγ to emphasise the dependence on γ .

A global coordinate chart for Hd is determined by H
d � m �→ (η, ρ) ∈ S

d−1 ×R+ where
(η sinhρ, coshρ) = m. Using these coordinates, we define

η(t) = ηγ (t) = η
(
σγ (t)

) ∈ S
d−1 and ρ(t) = ργ (t) = ρ

(
σγ (t)

) ∈ R+.

The following identity follows from (6.5) and (6.1):

(6.6) coshργ (t) = 
d+1,d+1(t) = 1 +
∞∑

n=1

∫
a<t1<···<t2n<t

〈dγt1, dγt2〉 · · · 〈dγt2n−1, dγt2n
〉,

where 
(t) = (
ij (t))i,j=1,...,d+1. We will need to broaden this discussion to consider the
development of paths after complex rescaling. To this end, if γ is as above and z ∈ C then
we let zγ denote the path in V C, the complexification of V . We will be interested in the
relationship between the solution to (6.3), when γ is replaced by zγ , and the series (6.6). The
following lemma identifies the structure we need.

LEMMA 6.1. Let γ : [a, b] → V be a continuous path of bounded variation. For z ∈ C,
let zγ : [a, b] → V C be the rescaling of γ by z ∈ C. Given an orthonormal basis of V , write
γt = (γ 1

t , . . . , γ d
t ) ∈ R

d and zγ (t) := (zγ 1
t , . . . , zγ d

t ) ∈ C
d in terms of this basis. Then

(6.7) d
zγ (u) = F
(
d(zγ )(u)

)

zγ (u), u ∈ [a, b], with 
zγ (s) = Id+1

has a unique solution in Md+1(C), and furthermore, the entry

(6.8) 

zγ
d+1,d+1(t) = 1 +

∞∑
n=1

z2n
∫

0<t1<···<t2n<t
〈dγt1, dγt2〉 · · · 〈dγt2n−1, dγt2n

〉.

If γ is a piecewise linear path defined by the concatenation,

γv1 ∗ γv2 · · · ∗ γvn : [a, b] → V,

that is, γ is such that γ ′
vi

(t) = vi ∈ R
d for t ∈ (ti−1, ti). Then the solution to (6.7) is given

explicitly by the matrix product

(6.9) 
zγ (b) = A(vn,�n, z)A(vn−1,�n−1, z) · · ·A(v1,�1, z),

where �i = tt − ti−1 and

(6.10) A(v,�, z) := Id+1 + sinh
(
z|v|�)

M + (
cosh

(
z|v|�) − 1

)
M2

in which

M =
(

0 ṽ

ṽT 0

)
∈ Md+1(R) with ṽ = v

|v| .
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PROOF. Since the ODE (6.7) is linear, there is a unique solution 
zγ (t), which can be
represented by equation (6.5) by replacing γ with zγ . Then equation (6.8) can be obtained
by taking the last entry of this equation.

To obtain the explicit solution in the case where γ is piecewise linear path, we first assume
γ ′ = v on [s, t]. Then by using the observation that M3 = M together with equation (6.5),
we have



zγ
s,t (t) = I +

∞∑
n=1

(z|v|)2n−1(t − s)2n−1

(2n − 1)! M +
∞∑

n=1

(z|v|)2n(t − s)2n

(2n)! M2

= I + sinh
(
z|v|(t − s)

)
M + (

cosh
(
z|v|(t − s)

) − 1
)
M2.

In the general case, the multiplicative property (6.4) together with simple induction argument
implies that the solution has the form (6.9). �

6.2. Signature kernels and hyperbolic development. We begin this subsection by giving
a closed form of the φ-signature kernel K

W,μ
φ (s, t) for the special case φ(k) = (k

2)! based on
the theory presented above.

THEOREM 6.2 (Formula for 〈E[S(◦B)], S(γ )〉φ). Let φ : N ∪ {0} → R+ be defined by
φ(k) = (k

2 )! for k ∈ N ∪ {0}. Suppose that B is a d-dimensional Brownian motion, then the
expected Stratonovich signature, E[S(◦B)0,s], belongs to Tφ((V )) for any 0 ≤ s < ∞. Fur-
thermore, if γ : [0,1] → V is any continuous path of bounded variation it holds that

(6.11) K
W,γ
φ (s, t) := 〈

E
[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = cosh

(
ρ√

s/2γ (t)
)

for all t in [0,1].
In this notation, ρλ(t) := dHd(o, σλγ (t)) is the distance between the hyperbolic development
σλγ (t) of the path λγ (·) from ToH

d onto the d-dimensional hyperbolic space. Hd started
at the base point o = (0,0, . . . ,1) ∈ H

d , and dHd : Hd × H
d → [0,∞) is the Riemannian

distance on H
d .

PROOF. For the first assertion, recall that (see, e.g., Proposition 4.10 in [21])

E
[
S(◦B)0,s

] = exp

(
s

2

d∑
i=1

e2
i

)
=

∞∑
k=0

sk

2kk!
d∑

i1,...,ik=1

e2
i1

· · · e2
ik

so that ∥∥E[
S(◦B)0,s

]∥∥2
φ =

∞∑
k=0

k! s2kdk

22k(k!)2 = es2d/4 < ∞.

For the second assertion, we have that〈
E

[
S(◦B)0,s

]
, S(γ )0,t

〉
φ =

∞∑
k=0

sk

2k

∫
0<t1<···<t2k<t

〈dγt1, dγt2〉 · · · 〈dγt2k−1, dγt2k
〉.

The right-hand side of this expression equals that of (6.11); see formula (6.6). �

In the following, we give some remarks on the computation of this basic signature kernel
based on the above theorem.

REMARK 6.3. We re-emphasise the key points. (1) In contrast to the earlier case of
two paths, we need only solve an ODE to calculate 〈E[S(◦B)], S(γ )〉φ and not a PDE. (2)
For general γ , the ODE is known, and is determined by the linear vector fields in equation
(6.3). Any ODE solver such as Runge–Kutta could in principle be used to obtain numerical
solutions. (3) For the piecewise linear case, the exact solution is given in equation (6.9) as a
product of matrices.
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6.3. The original kernel for expected signatures. Theorem 6.2 gives a closed-form ex-
pression for the φ-signature kernel of Stratonovich expected signature of Brownian motion
and the signature of a bounded variation continuous path where φ(k) = (k

2)!. As previously,
we will be interested in related formulae for different signature kernels. We can obtain these
formulae by using an extension of the ideas developed earlier in the paper. In the case of the
original signature kernel (i.e., φ ≡ 1), we can make use of the classical integral representation
of the reciprocal gamma function which for integers has the form:

(6.12)
1

k! = 1

2πi

∮
C

z−(k+1)ez dz = 1

2π

∫ π

−π
e−ikθ eeiθ

dθ,

where
∮
C denotes the contour integral around the unit circle traversed once anticlockwise.

This is an instance of the more general formula

(6.13)
1


(p)
= 1

2πi

∮
H

z−pez dz,

where H is a Hankel contour, which winds from −∞− 0i in the lower half-plane, anticlock-
wise around 0 and then back to −∞+ 0i in the upper half-plane, while respecting the branch
cut of the integrand along the negative real axis. The advantage of using these integral repre-
sentation is twofold. First, the integrand has exponential dependence on k making it suitable
to employ the techniques developed earlier in the paper. Second, the underlying numerical
integration theory is well developed and the convergence rates for optimised quadrature for-
mulae are exceedingly fast. We give some examples below but refer the reader to [31] for
further details. We have the following theorem.

THEOREM 6.4. Let φ ≡ 1. Suppose B is a d-dimensional Brownian motion, then the
expected Stratonovich signature, E[S(◦B)0,s], belongs to Tφ((V )) for any 0 ≤ s < ∞ and

(6.14)
∥∥E[

S(◦B)0,s

]∥∥2
φ = 1

2πi

∮
C

z−1ez+s2d/(4z) dz,

where the contour C is the unit circle in C traversed anticlockwise. Furthermore, if γ is any
continuous path of bounded variation it holds that

(6.15) K
W,γ
φ (s, t) := 〈

E
[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = 1

2πi

∮
C

z−1ez

cs(z)γ
d+1,d+1(t) dz,

where cs(z) = √
s/2z ∈ C and 


cs(z)γ
d+1,d+1(t) is defined by the series (6.8), that is, the last

diagonal entry of the matrix-valued solution to differential equation (6.7).

PROOF. Using the definition of the original signature kernel and the dominated conver-
gence theorem to interchange the order of

∑
and

∮
C , we have

〈
E

[
S(◦B)0,s

]
, S(γ )0,t

〉
φ =

∞∑
k=0

1

k!
sk

2k

∫
0<t1<···<t2k<t

〈dγt1, dγt2〉 · · · 〈dγt2k−1, dγt2k
〉

= 1

2πi

∮
C

z−1ez

×
( ∞∑

k=0

z−k sk

2k

∫
0<t1<···<t2k<t

〈dγt1, dγt2〉 · · · 〈dγt2k−1, dγt2k
〉
)

dz.

If cs(z) = √
s/2z, then by equation (6.8), we know that

∞∑
k=0

z−k sk

2k

∫
0<t1<···<t2k<t

〈dγt1, dγt2〉 · · · 〈dγt2k−1, dγt2k
〉 = 


cs(z)γ
d+1,d+1(t),
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which is the last entry of the solution 
cs,zγ (t) to ODE (6.7). The argument for the squared
norm of Brownian motion, follows a similar pattern and yields∥∥E[

S(◦B)0,s

]∥∥2
φ = 1

2πi

∮
C

z−1ez

( ∞∑
k=0

z−k s2kdk

22kk!
)

dz = 1

2πi

∮
C

z−1ezes2d/(4z) dz.
�

Computation of the contour integrals. The implementation of the formula above demands
an efficient way to approximate contour integrals of the form

(6.16) I = 1

2πi

∮
C

ezf (z) dz = 1

2π

∫ π

−π
eeiθ

f
(
eiθ )

eiθ dθ.

A natural approach is to apply a trapezoidal rule based on N equally spaced points on the
unit circle, that is, to approximate I using

(6.17) IN = 1

N

N∑
k=1

ezkf (zk)zk,

where zk = e2kπi/N . Several other methods have been proposed in Trefethen, Weideman and
Schmelzer [31] for the efficient approximation of the Hankel-type contour integrals of the
form

I = 1

2πi

∮
H

ezf (z) dz.

The idea is to seek an optimal selection of contour according to the number of points in the
quadrature formula. Letting ϕ(θ) be an analytic function that maps the real line R onto the
contour H . Then the approach is to approximate

I = 1

2πi

∫ +∞
−∞

eϕ(θ)f
(
ϕ(θ)

)
ϕ′(θ) dθ

by

(6.18) IN = −iN−1
N∑

k=1

ezkf (zk)wk = −
N∑

k=1

ckf (zk)

on the finite interval [−π,π ] with N points, which are regularly spaced on the interval and
zk = ϕ(θk), wk = ϕ′(θk) and ck = iN−1ezkwk . The convergence rates for these optimised
quadrature formulae are very fast, of order O(3−N). Three classes of contours have been
investigated in [31]:

• Parabolic contours

ϕ(θ) = N
(
0.1309 − 0.1194θ2 + 0.2500iθ

)
.

• Hyperbolic contours

ϕ(θ) = 2.246N
(
1 − sin(1.1721 − 0.3443iθ)

)
.

• Cotangent contours

ϕ(θ) = N
(
0.5017θ cot(0.6407θ) − 0.6122 + 0.2645iθ

)
.

Note in each case the dependence of the family on N .
The procedure for computing the kernel in equation (6.15) is first compute the function



cs(z)γ
d+1,d+1(t) by utilising the explicit formula (6.9) for piecewise linear paths. By taking

f (z) = z−1

cs(z)γ
d+1,d+1(t),

we can approximate the contour integral by one of the approaches described above.
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6.4. Expected signatures for general kernels. The representation of the previous sub-
section can be combined with the ideas of Section 4 to obtain similar representations for
〈E[S(◦B)], S(γ )〉φ for general φ satisfying the conditions of Theorem 4.11. The expression
is as follows.

THEOREM 6.5. Let μ be a finite signed Borel measure μ on R. Suppose that φ : N ∪
{0} →C is such that

φ(k) =
∫
G

g(̃z)αkμ(dz̃) ∈ C for all k ∈ N∪ {0}
for some function g : C → C. We assume that φ satisfies the conditions in Theorem 4.11,
and that B is a d-dimensional Brownian motion. Then the expected Stratonovich signature,
E[S(◦B)0,s], belongs to T|φ|((V )) for any 0 ≤ s < ∞ and

(6.19)
∥∥E[

S(◦B)0,s

]∥∥2
φ = 1

2πi

∮
C

∫
G

[
z−1ez exp

(
g(̃z)2αs2d

4z

)]
μ(dz̃) dz,

where C is unit circle in C traversed anticlockwise. Furthermore, if γ is any continuous path
of bounded variation it holds that

(6.20) K
W,γ
φ (s, t) := 〈

E
[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = 1

2πi

∮
C

∫
G

[
z−1ez


cg,α,s (̃z,z)γ

d+1,d+1 (t)
]
μ(dz̃) dz,

where cg,α,s (̃z, z) := g(̃z)α
√

s/(2z) ∈ C and 

cg,α,s (̃z,z)γ

d+1,d+1 (t) is the series (6.8), that is, the last
diagonal entry of the solution to differential equation (6.7).

PROOF. The conditions for φ in Theorem 4.11 and by now standards estimates allow for
the steps of the proof of Theorem 6.4 to be repeated making the obvious modifications. �

As a special case, if φ is the moments of a random variable π , that is,

(6.21) φ(k) = E
[
πk] ∀k ≥ 0,

the representations are as follows.

COROLLARY 6.6. Let the function φ : N ∪ {0} → R as defined in (6.21) and ψ(k) =
E[|π |k] such that ψ satisfies Condition 1. Suppose B is a d-dimensional Brownian motion,
then the expected Stratonovich signature, E[S(◦B)0,s], belongs to T|φ|((V )) for any 0 ≤ s <

∞ and

(6.22)
∥∥E[

S(◦B)0,s

]∥∥2
φ = 1

2πi

∮
C

z−1ez
Eπ

[
e(πs)2d/(4z)]dz.

If γ is any continuous path of bounded variation, it holds that

(6.23) K
W,γ
φ (s, t) := 〈

E
[
S(◦B)0,s

]
, S(γ )0,t

〉
φ = 1

2πi

∮
C

z−1ez
Eπ

[



cs(π,z)γ
d+1,d+1(t)

]
dz,

where cs(x, z) := x
√

s/(2z) ∈ C and 

cs(x,z)γ
d+1,d+1(t) is the series (6.8).

As an example, we recall the case φ(k) = 
(m+1)
(k+1)

(k+m+1)

studied already in Section 4. Sup-
pose the random variable π ∼ Beta(1,m) is Beta distributed, then the moments of π are

E
[
πk] = B(k + 1,m)

B(1,m)
= φ(k).

We then have the following.
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EXAMPLE 6.7. Let φ(k) = 
(m+1)
(k+1)

(k+m+1)

and B a d-dimensional Brownian motion.
Then φ satisfies Condition 1. The expected Stratonovich signature, E[S(◦B)0,s], is well-
defined and belongs to Tφ((V )) for any 0 ≤ s < ∞, and the squared norm

(6.24)
∥∥E[

S(◦B)0,s

]∥∥2
φ = 
(m + 1)

2πi

∮
C

z−(m+1)ez dz√
1 − s2d/z2

.

If γ is any continuous path of bounded variation, then

(6.25) K
γ,W
φ (s, t) = 
(m + 1)

2πi

∮
C

z−(m+1)ez

[
1√
2π

∫ +∞
−∞



cs(x,z)γ
d+1,d+1(t)e

− x2
2 dx

]
dz,

where cs(x, z) = z−1x
√

s ∈ C and 

cs(x,z)γ
d+1,d+1(t) is the series (6.8).

The representations above are slightly different from Corollary 6.6 in which π should be
a Beta random variable. The expressions above are obtained by the formulas below:


(2k + 1)

2kk! = (2k − 1)!! = EX

[
X2k] and

1


(2k + m + 1)
=

∮
C

z−(2k+m+1)ez dz,

where X ∼ N(0,1) is a standard normal random variable. In the point view of computation,
the Gaussian quadrature for approximating the formula (6.25) is much easier than using the
formula (6.23) with π ∼ Beta(1,m).

REMARK 6.8. In terms of the computation procedure, we take the signature kernel in
equation (6.25) as an example. It can be calculated in three successive steps. First, for fixed
z, x and s, get the exact value of 


cs(x,z)γ
d+1,d+1(t) by the explicit solution (6.9) to ODE (6.7) for

a piecewise linear path. Second, approximate the expectation

EX

[



cs(X,z)γ
d+1,d+1(t)

] = 1√
2π

∫ +∞
−∞



cs(x,z)γ
d+1,d+1(t)e

− x2
2 dx

by classical Gaussian quadrature on the whole real line. Third, approximate the contour in-
tegral using one of the methods described above. The steps are summarised schematically as
follows:

K
W,γ
φ (s, t) = 
(m + 1)

2πi

∮
C

z−(m+1)ez︸ ︷︷ ︸
(3) Contour approximation

[
1√
2π

∫ +∞
−∞

(1) explicit solution︷ ︸︸ ︷



cs(x,z)γ
d+1,d+1(t) e− x2

2 dx︸ ︷︷ ︸
(2) Gaussian quadrature

]
dz.

The general form (6.20) can also be computed by these three steps successively but the
quadrature formula will generally be more complicated to implement than the Beta random
variable case; see Section 5 for details.

7. Optimal discrete measures on paths. In the previous sections, we have introduced
the φ-signature kernels. We described the method for the evaluation of these kernels for a
pair of continuous bounded variation paths, and derived a closed-form expression for the
expected signature against Brownian motion. In particular, given a finite collection of contin-
uous bounded variation paths {γ1, γ2, . . . , γn} on V and a discrete measure μ = ∑n

i=1 λiδγi

supported on this set we can evaluate

∥∥EX∼μ

[
S(X)0,1

]∥∥2
φ =

n∑
i,j=1

λiλjK
γi,γj

φ ,
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and also 〈
EX∼W

[
S(X)0,1

]
,EX∼μ

[
S(X)0,1

]〉
φ,

where W denotes the Wiener measure. This can be used to measure the similarity of using
the maximum mean discrepancy distance associated with the φ signature kernel:

d2
φ(W,μ) = ∥∥EX∼W

[
S(X)0,1

] −EX∼μ

[
S(X)0,1

]∥∥2
φ,

which can be used as the basis of goodness-of-fit tests to measure the similarity of μ to
Wiener measure. We refer to [13] and [9] where kernels have been proposed as a way to
support similar analyses.

Changing our perspective, we can also attempt to find the optimiser over some subset of
measures C, that is,

(7.1) μ∗ = arg min
μ∈C

∥∥EX∼W
[
S(X)0,1

] −EX∼μ

[
S(X)0,1

]∥∥2
φ

to give the dφ-best approximation to Wiener measure on C. An example in which this is
tractable is when the support of μ in C is fixed to be {γ1, γ2, . . . , γn} and where the set over
which the optimisation is carried out is the set of probability measures with this support.
In other words, C can be identified with the simplex Cn = {λ : ∑n

i= λi = 1, λi ≥ 0}. By
finding this optimum, we can then compare the value dφ(W,μ), for a given measure μ, to
the optimised value dφ(W,μ∗) to and use as a guide to whether μ is dφ-close to W when
compared to discrete measures having the same support. A closely related, although more
advanced problem, is the φ-cubature problem of solving

(
μ∗, {γi}∗) = arg min

(μ,{γi})

∥∥∥∥∥E[
S(◦B)0,1

] −
n∑

i=1

λiS(γi)0,1

∥∥∥∥∥
2

φ

,

which in the case where φ(n) = 0 for n ≥ N corresponds to find a degree-N cubature formula
in the sense of [21]. For N large enough, this can be minimised (not necessarily uniquely)
to zero and explicit formulas for (λi, γi) are known in some case; again see [21] for more
details.

7.1. Existence and uniqueness of optimal discrete measure. In this subsection, we
consider in detail the problem described above. We give conditions on the collection
{γ1, γ2, . . . , γn} so that

L(μ) = d2
φ(W,μ)

has a unique minimiser on the set

Cn =
{
μ =

n∑
i=1

λiδγi
: λi ≥ 0, λ1 + · · · + λn = 1

}
.

In order to find the optimal discrete measure on the set of paths {γi}ni=1, we could solve the
problem in equation (7.1) with constraints λi ≥ 0 and

∑n
i=1 λi = 1. This is equivalent to

solving the quadratic optimisation problem of quadratic functions with linear equality and
inequality constraints given by

min
x∈Rn

1

2
xT Kx − hT x

subject to 1T x = 1, x ≥ 0,

(7.2)
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where

K = (
K

γi,γj

φ

)
i,j=1,...,n, and h = (

K
γ1,W
φ , . . . ,K

γn,W
φ

)T
.

Existence and uniqueness of the optimal solution is guaranteed by the positive definiteness
of K . Some sufficient conditions for positive definiteness can be obtained from the following
lemma.

LEMMA 7.1. The set of all signatures S of continuous bounded variation paths is a
linearly independent subset of T ((V )).

PROOF. Suppose that {h1, . . . , hn} is a subset of S and suppose that
∑n

i=1 λihi = 0 with
not all λi = 0, for example, suppose that λj �= 0. The vectors h1, . . . , hn are distinct and so
there exist linear functionals fi on T ((V )) for i �= j with fi(hi) = 0 and fi(hj ) = 1. Let
p : T ((V )) → R be the polynomial p(x) = ∏

i �=jfi(x) then the linear functional L defined
by the shuffle product L = f1 ��f2 · · · ��fn agrees with p on S , and hence we arrive at the
contradiction

λj =
n∑

i=1

λiL(hi) = 0.
�

COROLLARY 7.2. Let {γ1, . . . , γn} be a collection of continuous V -valued paths of
bounded variation having distinct signatures. If φ : N∪{0} → (0,∞) satisfies Condition 1,
then the matrix K = (〈S(γi), S(γj )〉φ)i,j=1,...,n is positive definite.

PROOF. If 0 �= x ∈ R
n, then the previous proposition ensures that

∑n
i=1 xiS(γi)a,b �= 0.

Since ‖ · ‖φ is a norm, we have

0 <

∥∥∥∥∥
n∑

i=1

xiS(γi)a,b

∥∥∥∥∥
2

φ

= xT Kx

as required. �

We now prove an existence and uniqueness theorem for the dφ-closest discrete probability
measure to Wiener measure, which is supported on {γ1, . . . , γn}.

PROPOSITION 7.3. Let {γ1, . . . , γn} be a collection of continuous V -valued paths of
bounded variation defined over [a, b] and having distinct signatures. Assume that φ :
N∪{0} → (0,∞) satisfies Condition 1. Let Cn denote the n-simplex {μ = (μ1, . . . ,μn) :∑n

i=1 μi = 1,μi ≥ 0} so that Cn is in one-to-one correspondence with the set of probability
measures supported on {γ1, . . . , γn} by the identification of μ with

∑n
i=1 μiδγi

. Then there
exists a unique μ∗, which minimises dφ(μ,W) over μ in Cn, that is,

μ∗ = arg min
μ∈Cn

∥∥E[
S(◦B)a,b

] −EX∼μ

[
S(X)a,b

]∥∥
φ.

PROOF. It is easy to verify that the set Cn is a compact and convex set in R
n. Since

f (x) = 1
2xT Kx − hT x is continuous on the compact set Cn, then f is bounded and attains

its minimum on some points in the set Cn. That means that there exist optimal solutions
x∗ ∈ Cn such that

f
(
x∗) = min

x∈Cn

f (x).
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Let m = minx∈Cn f (x) and x∗
1 , x∗

2 ∈ Cn be two optimal solutions. Then, for any α ∈ [0,1],
we have

αx∗
1 + (1 − α)x∗

2 ∈ Cn

and

m ≤ f
(
αx∗

1 + (1 − α)x∗
2
) ≤ αf

(
x∗

1
) + (1 − α)f

(
x∗

2
) = m.

Thus,
1

2

(
x∗

1
)T

Kx∗
2 − 1

2
hT (

x∗
1 + x∗

2
) = m.

Since

f
(
x∗

1
) = 1

2

(
x∗

1
)T

Kx∗
1 − hT x∗

1 = m and f
(
x∗

2
) = 1

2

(
x∗

2
)T

Kx∗
2 − hT x∗

2 = m,

combining above three equations together, we have(
x∗

2 − x∗
1
)T

K
(
x∗

2 − x∗
1
) = 0.

Since the matrix K is positive definite on R
n, we must have that x∗

1 = x∗
2 . So, we have

concluded our proof. �

REMARK 7.4. The next aim is to find the optimal measure in Theorem 7.3 and the min-
imised value of the objective. In some cases, this can be done explicitly. Letting f be the
function in the proof, we have the following cases.

Case 1 There exists x∗ ∈ Cn such that ∇f (x∗) = 0. Then the optimal solution and the
value are

x∗ = K−1h ∈ Cn, f
(
x∗) = −1

2
hT K−1h.

Case 2 Assume that ∇f is nonvanishing on Cn. If there exists a vertex em of Cn such that
f (em) < f (ej ) for all j �= m and if it satisfies that

(7.3) (Kem − h)T (ei − em) ≥ 0 ∀i ∈ [n] := {1,2, . . . , n},
then the optimal solution is em and f (em) = 1

2eT
mKem − hT em. Actually, we have

f (x) − f (em) = ∇f (em)T (x − em) + 1

2
(x − em)T ∇2f (em)(x − em)

= (Kem − h)T (x − em) + 1

2
(x − em)T K(x − em)

= (Kem − h)T

(
n∑

i=1

αiei − em

)
+ 1

2
(x − em)T K(x − em)

=
n∑

i=1

αi(Kem − h)T (ei − em) + 1

2
(x − em)T K(x − em)

≥ 0,

where x = ∑n
i=1 αiei is a convex combination of vertexes of Cn. The condition (7.3) means

that

f̃ (t) = f
(
(1 − t)em + tei

)
= 1

2
(ei − em)T K(ei − em)t2 + (Kem − h)T (ei − em)t + f (em)

is increasing on the interval [0,1].
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If ∇f does not vanish in Cn and the conditions in case 2 of the above do not hold, then
there is no explicit expression for the optimal solution and alternative numerical methods are
needed to determine the minimiser. Common tools are active-set methods and interior point
methods; see [35, 36] and the references therein.

8. Examples and numerical results. In this section, we give some numerical results to
illustrate the usefulness of general signature kernels in measuring the similarity or alignment
between a given discrete measures on paths and Wiener measure. We illustrate the use of
these measures in a number of examples. As in the previous section, let μ = ∑n

i=1 λiδγi
be a

discrete probability measure supported on a finite collection of continuous bounded variation
paths γ : [0,1] → V and denote the Wiener measure on W . A plausible measure of the
alignment between these two expected signatures is

(8.1) cos∠φ(μ,W) := 〈EX∼μ[S(◦X)0,1],EX∼W [S(X)0,1]〉φ
‖EX∼μ[S(◦X)0,1]‖φ‖EX∼W [S(X)0,1]‖φ

.

It follows from our earlier discussion that cos∠φ(μ,W) ∈ [0,1]. A justification for this quan-
tity measuring the alignment of the measures μ and W , rather than just their expected signa-
tures is that for any given pair of measures ν1 and ν2 on a space of (rough) paths it holds that
cos∠φ(ν1, ν2) = 1 if and only if there exists λ ∈ R with

EX∼ν1

[
S(◦X)0,1

] = λEX∼ν2

[
S(◦X)0,1

]
.

The fact that λ = 1, and hence that the expected signatures coincide, follows by interpreting
this equality under the projection π0 : T ((V )) → R. Another quantity we use is the MMD
distance

(8.2) dφ(μ,W) = ∥∥EX∼μ

[
S(◦X)0,1

] −EX∼W
[
S(X)0,1

]∥∥
φ,

which we have already discussed extensively.

8.1. Discrete measures on Brownian paths. In Section 7, we proved the existence of a
unique optimal probability measure μ∗ supported on {γ1, . . . , γn} such that

μ∗ = arg min
μ∈Cn

∥∥E[
S(◦B)0,1

] −E
μ[

S(γ )0,1
]∥∥2

φ.

We now present an example in which {γ1, . . . , γn} is obtained as the piecewise linear inter-
polation of n i.i.d. discretely-sampled Brownian paths. We consider two cases for φ:

(1) φ(k) = (k
2)! for n ∈ N ∪ {0}. We refer to the resulting φ-signature kernel, somewhat

inexactly, as the the factorially-weighted signature kernel.
(2) The original signature kernel φ(k) ≡ 1.

EXAMPLE 8.1. We randomly sample n i.i.d. Brownian motion paths in R
d . Each path is

sampled over the time interval [0,1] on an equally-spaced partition 0 = t1 < t2 < · · · < tm =
1 with tj+1 − tj = 1

m−1 . We denote the resulting finite set piecewise linearly interpolated
Brownian sample paths as

S(n,m,d) = {Bi}ni=1 with Bi = {
Bi(tj ) ∈R

d}m
j=1.

Figures 2 and 3 display the alignment cos∠φ(μ∗,W) and the similarity dφ(μ∗,W) for the
optimal discrete probability measure supported on S(n,m,d), in which the number of sample
paths n = 10 and the observation points m = 10 are fixed and the dimension d is varied over
the range 2 to 6. We run 400 independent experiments for each d , that is, we generate 400
independent samples of the sets S(n,m,d) for each dimension d . Each set S(n,m,d) has an
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FIG. 2. Boxplots of the factorially-weighted signature kernel. (a) The left panel shows the distribution of the
values of the alignment cos∠φ(μ∗,W) of the optimal measure and the Wiener measure across 400 samples. The
x-axis is the dimension of the Brownian motion, and the y-axis is the value of the alignment. (b) The right panel
shows the same for the MMD distance dφ(μ∗,W).

optimal measure associated with it, which we compute. The boxplots in Figures 2 and 3 show
the median, range and interquartile range of the values of the alignment and the similarity of
the optimal discrete measures over these 400 samples. Qualitatively, we can see from both
quantities that they show dependence on the dimension of the state space, with the alignment
decreasing and the dis-similarity increasing w.r.t. the dimension. We can also compare the
results using the two different φ-signature kernels with the original signature kernel showing
the same behaviour w.r.t. the dimension having a persistently higher level of alignment than
under the factorially-weighted signature kernel across all of the dimensions considered.

8.2. Examples using cubature formulae. In the paper [21], Lyons and Victoir studied
cubature on Wiener space. Let Cbv([0, T ],V ) be a subset of Wiener space made of bounded

FIG. 3. The optimal measure under the original signature kernel.
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variation paths. We say that the paths γ1, . . . , γn ∈ Cbv([0, T ],V ) and the positive weights
λ1, . . . , λn define a cubature formula on Wiener space of degree m at time T if

E
[
SI (◦B)0,T

] =
n∑

j=1

λjS
I (γj )0,T

for all I ∈ Am := {I = (i1, . . . , ik) : k ≤ m} with m ∈ N.
Cubature on Wiener space can be an effective way to develop high-order numerical

schemes for high-dimensional stochastic differential equations and parabolic partial differ-
ential equations; see [21]. In Section 5 of [21], the authors also construct an explicit cubature
formula of degree 5 for 2-dimensional Brownian motion. The reader can find formulas of
these cubature paths and measure in Tables 2 and 3 in the same reference.

In this subsection, we analyse the results for a family of φ-signature kernels on three
discrete probability measures supported on this collection of cubature paths. We consider
the cubature weights themselves, the empirical measure of the sample (i.e., where they are
equally weighted) and the optimal measure obtained from Section 7. In Figure 4, we show
the similarity of these discrete measures and the Wiener measure under the family of Beta-
weighted signature kernels given by

(8.3) φ(k) = 
(m + 1)
(k + 1)


(k + m + 1)

for various values of m in the weight φ (shown along the horizontal axis).
The plot on the left panel of Figure 4 shows that as the parameter m increases these three

distances first increase fast and then gradually go down. We see that the distance of the op-
timal measure and the Wiener measure is smallest and the distance of the empirical measure
is much larger than the distance of cubature measure. The right panel shows the ratio of the
distance of optimal measure and the distance of cubature measure for different choices of m.

8.3. Applications in signal processing. The alignment in equation (8.1) and the similarity
in equation (8.2) defined by the φ-signature kernel give us a way of determining how large
a given discrete measure is different to the Wiener measure. We can use these quantities to

FIG. 4. The similarity under a family of Beta-weighted signature kernels. The left panel is the plot of the distance
of these discrete measures and the Wiener measure plotted against different values of m on the horizontal axis.
The right panel plots the ratio of the optimal distance and the cubature distance.
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measure deviation of a discrete measure from a reference measure (i.e., the Wiener measure
here). A natural application of these methods in signal processing is to mitigate/detect the
(additive) contamination of white noise under different types of perturbation.

The examples studied here are motivated by an attempt to study radio frequency inter-
ference (RFI) in the radio astronomy. In this setting, astronomers would like to obtain high-
resolution sky images of an interested astrophysical object using measurements from an array
of antennas (e.g., the Karl G. Jansky Very Large Array (VLA), etc.). The observation is called
visibility Vij (t, v,p), where ij is an antenna pair, t is the time integration, v is the frequency
and p is the polarization. Usually, the visibility would be contaminated by thermal noise and
radio frequency interference (RFI). So, the observation data from an interferometer can be
broken down into three components: the astrophysical sky signals, thermal noise and RFI.
The first component is slowly varying, which can be removed in the observation data by the
sky-subtraction method (see, e.g., [34]). The RFI signal is usually much stronger than ther-
mal noise but is also sometimes ultra-faint. For different antennas, the RFI contamination is
systematic and thermal noise can be assumed to be independent. In order to obtain a high-
resolution image, the first step is to design some methods to identify and then, if possible, to
remove the RFI component of the observation.

We consider two idealised types of RFI contamination. The first is by simple superposition
with a sine wave of a fixed single frequency and a given amplitude and phase, so that the
interference is narrow-band but persistent over time. The second will be to consider a short
duration spike, as modelled in the paper by Davis and Monroe [11] in the univariate setting,
in which the Brownian signal undergoes a perturbation at a uniformly distributed random
time to give

(8.4) B(t) + ε

√
(t − U)+.

We again compare the use of two φ-signature kernels. The factorially-weighted signature
kernel and the original signature kernel.

EXAMPLE 8.2. Working in d-dimensions, we take a path of the form

X
(j)
i (t) = B

(j)
i (t) + ε sin

(
2πνt − φ

(j)
i

)
, j = 1,2, . . . , d,

where the frequency ν is fixed, the phase shifts are φ
(j)
i and ε denotes a (small) fixed ampli-

tude. Let a finite collection of sample paths on time interval [0,1] as

S(n,m,d) = {Xi}ni=1 where Xi = {(
X

(1)
i (tj ), . . . ,X

(d)
i (tj )

) ∈ R
d}m

j=1.

In Figures 5 and 6, we fixed (n,m,d) = (10,10,2), ε from [0,1] and the frequency ν ∈ {2,3}.
We run 100 collections of paths S(n,m,d) for each ε and frequency ν. The figures show the
deviation of the alignment and the similarity of the optimal measure (the empirical measure,
resp.) and the Wiener measure, in which the middle line is the median of the alignment or the
similarity, respectively, and the shadow represents the range from the lower quartile to the
upper quartile. We generate 100 experiments for each ε. The figures show that the alignment
decreases very fast to a low level and the dis-similarity increases very quickly as ε becomes
large for both the optimal measure and the empirical measure. At larger frequencies ν, the
alignment (dis-similarity) decays (grows) more rapidly.

Finally, we present an example based on the construction in the paper of Davis and Monroe
[11] mentioned earlier. Here, the interference is characterised by a sudden high energy spike
at a uniform random time.
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FIG. 5. The case for the factorially-weighted signature kernel. (a) and (c) show similarities of discrete measures
and the Wiener measure where the horizontal is the value of ε and vertical axis is the value of alignment. (b) and
(d) show similarities of discrete measures and the Wiener measure. The solid line is for the optimal measure while
the dashed line is for the empirical measure. The upper panel is for the frequency ν = 2 and the lower is for ν = 3.

FIG. 6. The same example under the original signature kernel.
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FIG. 7. The case for the factorially-weighted signature kernel. (a) The left panel shows the alignment of discrete
measures and the Wiener measure for each ε taken from [0,1] where the x-axis is the value of ε and the y-axis is
the value of alignment. (b) The right panel shows the similarity of discrete measures and the Wiener measure as
in (a). The solid line is for the optimal measure while the dash line is for the empirical measure.

EXAMPLE 8.3. We define

X
(j)
i (t) = B

(j)
i (t) + ε

√
(t − Ui)+, j = 1,2, . . . , d,

where Ui is uniformly distributed in [0,1], the time interval t ∈ [0,1] and x+ = max{0, x}.
We denote a finite collection of these paths as

S(n,m,d) = {Xi}ni=1 where Xi = {(
X

(1)
i (tj ), . . . ,X

(d)
i (tj )

) ∈ R
d}m

j=1.

In Figures 7 and 8, the parameters (n,m,d) = (10,10,2) are fixed and ε is taken from [0,5].
We run 100 independent experiments for each ε. The plots are like ones in the above example.
The middle line is the median of the alignment (the similarity, resp.) and the shadow is the

FIG. 8. The same example under the original signature kernel.
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range from the lower quartile to the upper quartile of the alignment (the similarity, resp.) for
the 100 collections of sample paths. We can see from these figures that the alignment (the dis-
similarity, resp.) is decreasing (increasing, resp.) as ε increases, as one would expect. From
the point view of RFI mitigation, the alignment of the empirical measure is more relevant
than that of the optimal measure; the the values for the alignment with the optimal measure
are included for comparison. It is reasonable that as the strength ε is large the empirical
measure is less similar w.r.t. the Wiener measure than the optimal measure. The alignment
of the empirical measure decays faster than that of optimal measure in our experiments. This
suggests potential uses for building a method for the identification of RFI based on a threshold
for the alignment of the empirical measure. The preliminary results here for instance suggest
that a threshold of alignment of 0.2 under the factorially-weighted signature kernel could be
used in this example.
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