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1. Introduction

The simple optimal control problem to determine vector fields b(t, x) bounded by a constant k > 0 which maximize
(resp. minimize) the probability py(s, X; t, y) of diffusion processes

dX, = b(t, X,)dt + dB (1.1)

started at X; = x and ended at X; = y (where B = (B;);>0 is @ Brownian motion) has been considered and solved
explicitly in the previous work (Karatzas and Shreve, 1984, 1985; Qian et al.,, 2003; Qian and Zheng, 2002, 2004). The
method utilized in Qian et al. (2003), Qian and Zheng (2002) is quite elementary and is based on the density version of
the Cameron-Martin formula

t
Po+c(S, X3 £, ¥) = po(S, x5 £, y) +/ Esx {Rs,rc(r, Xr) - Vapu(r, X5 t,y)} dr (1.2)
N

for 0 < s < t, where py(s, x; t, y) denotes the transition probability density of X; defined by (1.1) under the condition that
Xs; = x with respect to the Lebesgue measure. Here b(t, x) and c(t, x) are two vector fields with at most linear growth,
(X¢, Psx) is the weak solution to (1.1) in the sense of Stroock-Varadhan’s article (Stroock and Varadhan, 1971), and R, is
the Cameron-Martin density process

t 1 t
Rur = exp [ f clr X)W, — 2 / |c|2(r,xr>dr] (13)
s 0
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where W is the martingale part of X. A simple inspection gives the optimal solutions b(t, x) = £« (x—y)/|x — y|, to which
an explicit formula, in dimension one, for p,(s, x; t, y) is given in Karatzas and Shreve (1984), Qian and Zheng (2002).
The question becomes difficult if we consider the simple optimal control problem for diffusion processes with barriers,
which arise from many stochastic optimization problems for example in pricing problems for options.
Let G € R" be a domain with a smooth boundary 9G, and G denote its closure. We wish to locate a vector field b(t, x)
(for t > 0 and x € G) bounded by «, which maximizes (resp. minimizes) the probability gy(s, x; t,y) (Where 0 < s < t,
X,y € G) of reflecting diffusion processes

dX, = b(t, X,)dt + dB + dL, (1.4)

started at X; = x € G and finished at X; = y € G, where B = (B;) is a Brownian motion in R", L is the local time of X
with respect to the boundary 9G, so that t — L; increases only on {t : X; € dG}. In this paper, we are going to establish
the following

Theorem 1. Let x > 0 be a constant. Giveny € G and T > 0. Let u*(t, x) (where t > 0 and x € G) be the unique solution to
the terminal and boundary problem of the backward parabolic equation

2u+ jAutk|Vul=0, for 0<t<T,xeG

limeyr u(t, x) = 8y(x), for xe G (1.5)
Zu(t, )|, =0, for 0<t<T.
Define
VuE(t AT, x
BE(E %) = e )

IV AT, %)

fort >0andx e G. Let qy(s, X; t, y) be the transition probability density of the diffusion defined by (1.4), where b(t, x), defined
on [0, 00) x G, is a bounded, Borel measurable vector field such that |b(t, x)| < « for t > 0 and x € G. Then

Q- (6T, y) < gt T, y) < g+ (6, %, T, y) (1.6)
forall0 <t < T and x € G.

Obviously, given T and y, the bounds in (1.6) for qu(t,x;T,y) are optimal, and (1.5) can be considered as the
Hamilton-Jacobi-Bellman (HJB) equation for the optimization problem for qy(t, x; T, y).

The semi-linear parabolic equations such as (1.5) have been studied in PDE literature (see e.g. LadyZenskaja et al.
(1968)). In order to carry out explicit computations, one needs to consider the nodal set of the space-derivative Vu(t, x),
which also solves a non-linear parabolic equation. The study of nodal sets of solutions to semi-linear parabolic equations
is however a difficult subject, and is far from complete. Interesting results may be found in the papers (Han and Lin, 1994;
Lin, 1991) and etc.

In the case that G = R", given T > 0 and y € R" then b*(t, x) = F«(x — y)/|x — y|, the radial direction vector fields,
which have been determined in Qian et al. (2003), Qian and Zheng (2004). Here we propose a new method for determining
the HJB equations for this optimization problem based on a representation for the perturbations of reflecting diffusion
processes, which extends the approach in Qian et al. (2003) to reflecting diffusion processes.

The paper is organized as following. In Section 2, we establish a representation formula for the transition probability
density of the reflecting diffusion process. Then, we present the proof of Theorem 1 by the study of the representation
and the HJB equation. In order to gain further knowledge about the optimal transition probabilities qbki(t, x;T,y) for
the general case, we demonstrate, in Section 3, by numerical simulations that the optimal diffusion processes exhibit an
interesting feature of phase transitions. Hence, the HJB equation may be equivalent to a free boundary problem.

2. Optimal bounds for reflecting diffusion processes

This section is devoted to the proof of Theorem 1.

The main ingredient in the proof of Theorem 1 is a density version of the Cameron-Martin formula for reflecting
diffusion processes. Let G € R" be an open subset with a smooth boundary G, and v denotes the outer unit normal

vector fields along dG. Suppose b(t, x) and c(t, x) are two bounded (time-dependent) vector fields for t > 0 and x € G.
Let (X, ;) be the reflecting diffusion process with infinitesimal generator

1
Fix= S A+HEN)-Y

with its state space G, that is, Ps x (for every s > 0 and x € G) is the solution to the martingale problem (see e.g. Stroock
and Varadhan (1971)):

MY =t X) = (5. Xs) — f L x f(r, X;)dr
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is a local martingale (where t > s) for every f € Cbl’z([O, 00) x G) such that % (t, ')|ac = 0 as. for all t > 0. Define a
family of probability measures Qs x by

dQs
dPs «

t 1 t
=Ry = exp {/ c(r, X)) - dW, — 7/ |c|2(r,Xr)dr} , (2.1)
F s 2 s
t
where s < t, and W is the martingale part of X which is a Brownian motion in R" under Ps .

Lemma 2. Under above assumptions and notations. (X¢, Qsx) (for s > 0 and x € G) is a reflecting diffusion process with its
infinitesimal generator

_1
Lix= EA + (b(t, x) +c(t,x)) - V.
That is, for any pair s > 0 and x € G,
t
WY = (e, X) — f(5.X) / o f(r X )

is a local martingale for t > s under the probability Qs y, for every f € Cbl'2 ([0, o0) X 5) such that %f(t, = 0 for all

t>0.

')|ac

Proof. Without losing generality, we may assume that s = 0 and x € G is fixed. Under Po.x, MY1 is a local martingale for
any f € C"? such that adT; (¢, ')|ac = 0 for all t > 0. Hence, according to the Girsanov theorem,

Ml — (v, )

is a local martingale under the probability Qo x, where N; = fO[ c(r, X;) - dW,. Since the martingale part W of X is a
Brownian motion, so that

t
(N, M) = / (¢, V) (r, X,)dr
0
and therefore

t
M =M}”-/ (c, Vf) (r. X )dr = M — (N, M1,
0

is a local martingale under Qs x, which completes the proof. O

By using Lemma 2, fors < t and x,y € G and the fact that both qn(s, x; t,y) and qp.c(S, X; t,y) are Holder continuous,
conditional on X; = y, we may obtain that

C\9» ; ’ ‘ 1 ‘
% =P [exp{ / (r. X,) - dW; — 5 / |c|2(r,xr)dr”, (22)
LA IR s N

where ;7 is the conditional probability P [-|X; = y], which is a probability measure on (£2, 7;) given via the density
process

el
dPs «

_ qb+C(r7 er t, y)
7 av(s, x; £, y)

Vs<r<t. (2.3)

Lemma 3. Let b(t, x) and c(t, x) be two bounded vector fields in G, and assume that b is smooth. Let (X;, Ps x) be the reflecting
diffusion process with generator % x as in Lemma 2. Then

T
Gorc(s. X: T, y) = (s, x: T, y) + / Py [Re.rC(r, Xp) - Vaqy(r, X, T, y)] dr (2.4)
N
forany 0 <s < T, and any x, y € G, where R is given in (2.1).

Proof. Lets < T and x,y € G be fixed. Then we have two positive martingales, one is the Cameron-Martin density
R: = Ry given by (2.1), which is the exponential martingale of N; = f; c(r, X;) - dW,, so that

t
R =1 +/ Rec(r, X;) - dW, (2.5)
S
for s <t < T, which defines the probability Qs . The another is the conditional probability density
t,Xe; T,
= M, Vs<t<T
av(s, % T, y)
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which determines the conditional probability Iy}, which can be written as

— (6, X T, y) — @ (tXT.y)—Ingp(s.x:T.y)
av(s, % T, y)
Since b is smooth, the martingale part of Inqy(t, X;; T, y) — Inqy(s, x; T, y) equals

Z = /r Vingy(r,X;; T,y) - dW;
so that M musst coincide with the exponential martingale of Z, hence
M, =1+ /tMern qQp(r, X:; T, y) - dW; (2.6)
fors <t <T.By 2(2.5), (2.6)) we have
(M,R); = ftMrR,c(r,Xr) -Vingy(r,Xs; T, y)dr
s

and therefore
MR; — (M, R),

is a martingale up to T, with M;R; = 1. Since both qp(s,x; T,y) and q(s, x; T, y) possess the Gaussian bounds (see
e.g. Aronson (1968), Stroock (1988)), therefore

Ap+c(S, % T, y)

=P} [Rr] = im P} [Rr
T,y er Rl =lmEy (Rr-.]

= limPs x [Mr_:Rr_]
el0

T
=1+Psy |:/. MiRic(r, X)) - VIngy(r, X;; T’Y)dr]
s

1 T
=14+ ——7—Psy U Rec(r, X;) - Vau(r, X;; T,y)dr} ,
ap(s, x; T, y) s

which completes the proof of the lemma. 0O

Lemma 4. Let 8 be a constant and y € G. Let w(t, x) be the unique weak solution to the following non-linear parabolic
equation

0 1
ngiAuwl—ﬂlel fort >0andx e G (2.7)
subject to the initial and boundary conditions that
a
—w(t,-)] =0 fort>0, and w(0,x) = §y(x). (2.8)
av G

Then both w(t, x) and its weak derivative Vw(t, x) are Hélder continuous for t > 0 and x € G, and for any given T > 0,

qu(t,x;T,y)=w(T —t,x) for0O<t<TandxeG, (2.9)
where
Vuw(T —t,
V(t’ X) — ﬂu
[Vw(T — t,x)|

and V(t,x) =0 fort > T.

Proof. According to the theory of parabolic equations (see e.g. LadyZenskaja et al. (1968)), the problem ((2.7), (2.8)) has
a unique weak solution w(t, x) which is Hélder continuous for t > 0 and x € G. We need a bit more regularity of the
solution w(t, x). To this end, for ¢ > 0 consider the semi-linear parabolic equation

0 1
awg = 5Auﬁ—i—,B,/|Vw€|2—i-52 fort >0andx e G (2.10)

subject to the same initial and boundary conditions (2.8). Then, there is a unique strong solution w*(t, x) for every & > 0
which is smooth for t > 0 and x € G. Let w; = Vw?® denote the space derivative. By taking derivatives in x for Eq. (2.10),

4
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we find that wy solves the Dirichlet boundary problem

0 1 Vw?®
—wy = 7A+/37w~v wy fort >0andx e G
at 2 [(Vwe)? + g2

subject to the Dirichlet boundary condition along dG. Notice that

Vw?

B———=| =<
V(Vwe)? + g2

is uniformly bounded, so according to Nash’s theory (see e.g. Nash (1958), or (Fabes and Stroock, 1986; Stroock, 1988)),
there is a convergent sequence {wf"} with ¢, | 0, which tends to the weak solution W to the parabolic equation

9 W = ]A +B Vi VI(w
at |2 [Vuw|
subject to the Dirichlet boundary condition along the boundary dG for t > 0. W is Hélder continuous in t > 0 and x € G.
W is a modification of the weak derivative Vw(t, x) for t > 0 and x € G. We may thus conclude that Vw(t, x) is Holder
continuous in (0, o) x G.

Given T > 0, and the unique weak solution w(t, x) to ((2.7), (2.8)), u(t, x) = w(T —t, x) solves the backward parabolic
equation

8u—i—1Au—|—ﬂivw(7—_t’.) Vu=0 fort >0andx € G (2.11)
— — . = > .
a2 IVw(T —t, -)|
subject to the initial and boundary conditions that
a
—u(t,’)] =0 fort<T, and limu(t, x) = §,(x). (2.12)
av 3G AT

Since qy(s, x; t, y) is the fundamental solution of the linear parabolic equation

0 1
—u=-Au+V(t,x)-Vu
ot 2 V(e x)

subject to the Neumann boundary condition at boundary dG, hence, (t, x) — u(t, x) =: qy(t, x; T, y) solves the backward

equation
d it 1Aﬁ+ﬂ Vw(T —t, )
at 2 |IVw(T —t, -)|

subject to the same initial-boundary conditions ((2.11), (2.12)). By the uniqueness, we must have u(t, x) = u(t, x) for
t < T and x € G. Hence

-Vii=0 fort >0and x>0 (2.13)

qu(t,x;T,y)=w(T —t,x) fort <TandxeG. O

Proof of Theorem 1

Now we have the major ingredients to prove Theorem 1. Let us explain the ideas leading to the conclusions in
Theorem 1. According to the representation formula (2.4), it is apparent that the optimal probability g,(s, x; T,y) is
achieved when

c(r,x) - Vequ(r,x; T, y)

has a definite sign for any c(t, x) such that both |b + c| and |b| are bounded by «. Thus for fixed T > 0 and y, we want
to find a vector field b(t, x), which may depend on T and y, such that |b| < «, and c(t, x) - Vqy(t, x; T, y) is non-negative
(resp. negative) for all t < T and x € G for all c(t, x) satisfying that |c + b| < «. Clearly the best we can do is to choose
b(t, x) such that

Va(t,x; T,y)

IVas(t, x; T, y)l

where A(t, x) = c(t, x)+b(t, x) so that |A(t, x)| < «. That is, the optimal vector fields should satisfy the functional equation

c(t,x) =A(t,x) «

Vape(t,x; T,y)

k————" """ fort >0and x €G. (2.14)
IVaue(t, X, T, y)l

bE(t, x) =+
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y=0 y=1
0.2 0.6

Fig. 1. Derivative Vw(t, x).

The question becomes to show the existence of such vector fields b*(t, x). Suppose such vector fields exist, then (¢, x) —
u(t, x) .= qp=(t, x; T,y) is the unique (weak) solution of the Neumann boundary problem to the backward equation

a 1

5u(t,x) + EAu(t,x) +bE(t,x)- Vu(t,x) =0 for0 <t <Tand x> 0 (2.15)
subject to the terminal condition that lim¢,r u(t, x) = 8,(x) and the boundary condition that 8%u(t, -)] sc = 0. Together
with (2.14), u(t, x) solves the initial and boundary problem to the semi-linear parabolic equation

d 1

&u+5Auj:K|Vu|:O for0<t<TandxeG (2.16)

subject to the initial and boundary conditions above. By the general theory of parabolic equations, the previous problem
(2.16) has a unique weak solution, see e.g. LadyZenskaja et al. (1968). The proof is complete.

3. The HJB equation: one dimensional case

The solution w(t, x) to the HJB equation (with reflecting boundary) ((2.7), (2.8)) plays the dominating role in our
discussion, thus it is interesting to look for its properties in order to gain further knowledge about the optimal probability
qp(t, x; T, y) where |b| < x. We consider the case where G = [0, o0) and y > 0.

Let B(= =+« ) be a constant. Recall that, for one dimensional case with G = [0, o0), the H]B equation for our optimization
problem is the boundary problem

a

1
&wziAw+ﬂ|Vw| fort >0and x>0 (3.1)
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Fig. 2. Free boundary s(t) for fixed y > 0 demonstrating feature of “phase transition”.

subject to the initial and boundary conditions that

d
lxlg)l 5“’“”‘) =0 fort >0, and w(0,x) = §,(x).

(3.2)
The solution w(t, x) > 0 for all t > 0 and x > 0 by the maximal principle and wy(t, x) = a%w(t, x) (fort > 0 and x > 0)
is Holder continuous in t > 0 and x > 0.
To gain more explicit information about the optimal bounds in (1.6), we need to understand the space derivative
D w(t, x). For t = T > 0 is sufficiently small
1

_x—y? _xp?
w(T, X) e I +4e 2
2rtT

1 (x=y)?
wy(T,X) = —

e
V23

and

27

[x—y—l—(x—i—y)e_zrﬂ]

which implies that for r > 0 small enough, w, has exactly one zero near y other than 0. According to the no-increasing
theorem of zeros (see e.g. Angenent (1988), Matano (1982)), there are at most one zero of wy(t, x) in (0, co) for every t > 0.

two-phase free boundary problem

Let s(t) = max {x > 0 : wy(t,x) =0} for t > 0. Then s(t) > 0 for t > 0 but small. The simulations below demonstrate
that a phase transition takes place at some 7, g. For t < 1, g, the non-linear parabolic Eq. (3.1) may be described by a

0 1
aw = 5Aw +BVw forO<x<s(t)andt <74
and

1
gw = EAw —BVw forx>s(t)andt < 1,p.
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While after time 7, g4, the parabolic equation becomes one phase flow equation

%w = %Aw —pBVw forx>0andt > 7.

The numerical results of the derivative Vw(t, x) for fixed 8 = 1and y = 0, 1, 5, 10, respectively, and t € [0.5, 5] and
x € [0, 15] are shown in Fig. 1. Fig. 1 shows, as long as y > 0, there is at most one root other than 0 to the equation
wx(t,x) = 0 for every t > 0. For y > 0, there exists T = 71,3 > 0, such that there is exactly one s(t) > 0 for every
0 <t < 7y such that wy(t, s(t)) = 0, and for every t > 7, g there is no zero of wy(t, -), i.e. wx(t, x) < 0, for any x > 0.
In Fig. 2, we have plotted the zeros s(t) for fixed y > 0 and g = 1. The point which s(t) crosses t-axis is the time t, g. So
the initial and boundary problem ((3.1), (3.2)) may be equivalent to a free boundary problem.
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