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a b s t r a c t

A solution to the optimal problem for determining vector fields which maximize (resp.
minimize) the transition probabilities for a class of reflecting diffusion processes is
obtained in this paper. The approach is based on a representation for the transition
probability density functions. The optimal transition probabilities under the constraint
that the drift vector field is bounded are studied in terms of the HJB equation. We
demonstrate by simulations that, even in one dimension, by considering the nodal set of
the solutions to the HJB equation, the optimal diffusion processes exhibit an interesting
feature of phase transitions.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The simple optimal control problem to determine vector fields b(t, x) bounded by a constant κ ≥ 0 which maximize
(resp. minimize) the probability pb(s, x; t, y) of diffusion processes

dXt = b(t, Xt )dt + dBt (1.1)

tarted at Xs = x and ended at Xt = y (where B = (Bt )t≥0 is a Brownian motion) has been considered and solved
xplicitly in the previous work (Karatzas and Shreve, 1984, 1985; Qian et al., 2003; Qian and Zheng, 2002, 2004). The
ethod utilized in Qian et al. (2003), Qian and Zheng (2002) is quite elementary and is based on the density version of

he Cameron–Martin formula

pb+c(s, x; t, y) = pb(s, x; t, y) +

∫ t

s
Es,x

{
Rs,rc(r, Xr ) · ∇xpb(r, Xr ; t, y)

}
dr (1.2)

or 0 ≤ s < t , where pb(s, x; t, y) denotes the transition probability density of Xt defined by (1.1) under the condition that
Xs = x with respect to the Lebesgue measure. Here b(t, x) and c(t, x) are two vector fields with at most linear growth,
(Xt ,Ps,x) is the weak solution to (1.1) in the sense of Stroock–Varadhan’s article (Stroock and Varadhan, 1971), and Rs,r is
the Cameron–Martin density process

Rs,t = exp
[∫ t

s
c(r, Xr )dWr −

1
2

∫ t

0
|c|2(r, Xr )dr

]
, (1.3)

∗ Corresponding author at: Shanghai Artificial Intelligence Laboratory, Shanghai, China.
E-mail addresses: qianz@maths.ox.ac.uk (Z. Qian), xuxingcheng@pku.edu.cn (X. Xu).
https://doi.org/10.1016/j.spl.2023.109855
0167-7152/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spl.2023.109855
https://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2023.109855&domain=pdf
mailto:qianz@maths.ox.ac.uk
mailto:xuxingcheng@pku.edu.cn
https://doi.org/10.1016/j.spl.2023.109855


Z. Qian and X. Xu Statistics and Probability Letters 199 (2023) 109855

w
a

w

(
x

s
w
t

T
t

D

here W is the martingale part of X . A simple inspection gives the optimal solutions b(t, x) = ±κ(x−y)/|x − y|, to which
n explicit formula, in dimension one, for pb(s, x; t, y) is given in Karatzas and Shreve (1984), Qian and Zheng (2002).
The question becomes difficult if we consider the simple optimal control problem for diffusion processes with barriers,

hich arise from many stochastic optimization problems for example in pricing problems for options.
Let G ⊆ Rn be a domain with a smooth boundary ∂G, and Ḡ denote its closure. We wish to locate a vector field b(t, x)

for t ≥ 0 and x ∈ Ḡ) bounded by κ , which maximizes (resp. minimizes) the probability qb(s, x; t, y) (where 0 ≤ s < t ,
, y ∈ Ḡ) of reflecting diffusion processes

dXt = b(t, Xt )dt + dBt + dLt (1.4)

tarted at Xs = x ∈ Ḡ and finished at Xt = y ∈ Ḡ, where B = (Bt ) is a Brownian motion in Rn, L is the local time of X
ith respect to the boundary ∂G, so that t → Lt increases only on {t : Xt ∈ ∂G}. In this paper, we are going to establish
he following

heorem 1. Let κ ≥ 0 be a constant. Given y ∈ Ḡ and T > 0. Let u±(t, x) (where t ≥ 0 and x ∈ Ḡ) be the unique solution to
he terminal and boundary problem of the backward parabolic equation⎧⎨⎩

∂
∂t u +

1
2∆u ± κ|∇u| = 0, for 0 ≤ t < T , x ∈ G

limt↑T u(t, x) = δy(x), for x ∈ Ḡ
∂
∂ν
u(t, ·)

⏐⏐
∂G = 0, for 0 ≤ t ≤ T .

(1.5)

efine

b±

κ (t, x) = ±κ
∇u±(t ∧ T , x)
|∇u±(t ∧ T , x)|

for t ≥ 0 and x ∈ Ḡ. Let qb(s, x; t, y) be the transition probability density of the diffusion defined by (1.4), where b(t, x), defined
on [0, ∞) × Ḡ, is a bounded, Borel measurable vector field such that |b(t, x)| ≤ κ for t ≥ 0 and x ∈ Ḡ. Then

qb−
κ
(t, x; T , y) ≤ qb(t, x; T , y) ≤ qb+

κ
(t, x; T , y) (1.6)

for all 0 ≤ t < T and x ∈ Ḡ.

Obviously, given T and y, the bounds in (1.6) for qb(t, x; T , y) are optimal, and (1.5) can be considered as the
Hamilton–Jacobi–Bellman (HJB) equation for the optimization problem for qb(t, x; T , y).

The semi-linear parabolic equations such as (1.5) have been studied in PDE literature (see e.g. Ladyženskaja et al.
(1968)). In order to carry out explicit computations, one needs to consider the nodal set of the space-derivative ∇u(t, x),
which also solves a non-linear parabolic equation. The study of nodal sets of solutions to semi-linear parabolic equations
is however a difficult subject, and is far from complete. Interesting results may be found in the papers (Han and Lin, 1994;
Lin, 1991) and etc.

In the case that G = Rn, given T > 0 and y ∈ Rn then b±(t, x) = ∓κ(x − y)/|x − y|, the radial direction vector fields,
which have been determined in Qian et al. (2003), Qian and Zheng (2004). Here we propose a new method for determining
the HJB equations for this optimization problem based on a representation for the perturbations of reflecting diffusion
processes, which extends the approach in Qian et al. (2003) to reflecting diffusion processes.

The paper is organized as following. In Section 2, we establish a representation formula for the transition probability
density of the reflecting diffusion process. Then, we present the proof of Theorem 1 by the study of the representation
and the HJB equation. In order to gain further knowledge about the optimal transition probabilities qb±

κ
(t, x; T , y) for

the general case, we demonstrate, in Section 3, by numerical simulations that the optimal diffusion processes exhibit an
interesting feature of phase transitions. Hence, the HJB equation may be equivalent to a free boundary problem.

2. Optimal bounds for reflecting diffusion processes

This section is devoted to the proof of Theorem 1.
The main ingredient in the proof of Theorem 1 is a density version of the Cameron–Martin formula for reflecting

diffusion processes. Let G ⊆ Rn be an open subset with a smooth boundary ∂G, and ν denotes the outer unit normal
vector fields along ∂G. Suppose b(t, x) and c(t, x) are two bounded (time-dependent) vector fields for t ≥ 0 and x ∈ Ḡ.
Let

(
Xt ,Ps,x

)
be the reflecting diffusion process with infinitesimal generator

Lt,x =
1
2
∆ + b(t, x) · ∇

with its state space Ḡ, that is, Ps,x (for every s ≥ 0 and x ∈ Ḡ) is the solution to the martingale problem (see e.g. Stroock
and Varadhan (1971)):

M [f ]
t = f (t, Xt ) − f (s, Xs) −

∫ t

Lr,Xr f (r, Xr )dr

s

2
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s a local martingale (where t ≥ s) for every f ∈ C1,2
b ([0, ∞) × Ḡ) such that ∂

∂ν
f (t, ·)

⏐⏐
∂G = 0 a.s. for all t > 0. Define a

family of probability measures Qs,x by

dQs,x

dPs,x

⏐⏐⏐⏐
Ft

= Rs,t := exp
{∫ t

s
c(r, Xr ) · dWr −

1
2

∫ t

s
|c|2(r, Xr )dr

}
, (2.1)

here s ≤ t , and W is the martingale part of X which is a Brownian motion in Rn under Ps,x.

emma 2. Under above assumptions and notations. (Xt ,Qs,x) (for s ≥ 0 and x ∈ Ḡ) is a reflecting diffusion process with its
nfinitesimal generator

L̃t,x =
1
2
∆ + (b(t, x) + c(t, x)) · ∇.

That is, for any pair s ≥ 0 and x ∈ Ḡ,

M̃ [f ]
t = f (t, Xt ) − f (s, Xs) −

∫ t

s
L̃r,Xr f (r, Xr )dr

is a local martingale for t ≥ s under the probability Qs,x, for every f ∈ C1,2
b

(
[0, ∞) × Ḡ

)
such that ∂

∂ν
f (t, ·)

⏐⏐
∂G = 0 for all

t > 0.

Proof. Without losing generality, we may assume that s = 0 and x ∈ Ḡ is fixed. Under P0,x, M [f ] is a local martingale for
ny f ∈ C1,2 such that ∂

∂ν
f (t, ·)

⏐⏐
∂G = 0 for all t > 0. Hence, according to the Girsanov theorem,

M [f ]
t −

⟨
N,M [f ]⟩

t

is a local martingale under the probability Q0,x, where Nt =
∫ t
0 c(r, Xr ) · dWr . Since the martingale part W of X is a

rownian motion, so that⟨
N,M [f ]⟩

t =

∫ t

0
⟨c, ∇f ⟩ (r, Xr )dr

nd therefore

M̃ [f ]
t = M [f ]

t −

∫ t

0
⟨c, ∇f ⟩ (r, Xr )dr = M [f ]

t −
⟨
N,M [f ]⟩

t

s a local martingale under Qs,x, which completes the proof. □

By using Lemma 2, for s < t and x, y ∈ Ḡ and the fact that both qb(s, x; t, y) and qb+c(s, x; t, y) are Hölder continuous,
onditional on Xt = y, we may obtain that

qb+c(s, x; t, y)
qb(s, x; t, y)

= Px,y
s,t

[
exp

{∫ t

s
c(r, Xr ) · dWr −

1
2

∫ t

s
|c|2(r, Xr )dr

}]
, (2.2)

here Px,y
s,t is the conditional probability Ps,x [·|Xt = y], which is a probability measure on (Ω,Ft ) given via the density

process

dPx,y
s,t

dPs,x

⏐⏐⏐⏐
Fr

=
qb+c(r, Xr ; t, y)
qb(s, x; t, y)

∀ s < r < t. (2.3)

Lemma 3. Let b(t, x) and c(t, x) be two bounded vector fields in Ḡ, and assume that b is smooth. Let (Xt ,Ps,x) be the reflecting
diffusion process with generator L̃t,x as in Lemma 2. Then

qb+c(s, x; T , y) = qb(s, x; T , y) +

∫ T

s
Ps,x

[
Rs,rc(r, Xr ) · ∇xqb(r, Xr ; T , y)

]
dr (2.4)

for any 0 ≤ s < T , and any x, y ∈ Ḡ, where R is given in (2.1).

Proof. Let s < T and x, y ∈ Ḡ be fixed. Then we have two positive martingales, one is the Cameron–Martin density
Rt = Rs,t given by (2.1), which is the exponential martingale of Nt =

∫ t
s c(r, Xr ) · dWr , so that

Rt = 1 +

∫ t

s
Rrc(r, Xr ) · dWr (2.5)

for s ≤ t ≤ T , which defines the probability Qs,x. The another is the conditional probability density

Mt =
qb(t, Xt; T , y)

, ∀ s < t < T

qb(s, x; T , y)

3
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hich determines the conditional probability Px,y
s,T , which can be written as

Mt =
qb(t, Xt; T , y)
qb(s, x; T , y)

= eln qb(t,Xt ;T ,y)−ln qb(s,x;T ,y).

Since b is smooth, the martingale part of ln qb(t, Xt; T , y) − ln qb(s, x; T , y) equals

Zt :=

∫ t

s
∇ ln qb(r, Xr ; T , y) · dWr

so that M must coincide with the exponential martingale of Z , hence

Mt = 1 +

∫ t

s
Mr∇ ln qb(r, Xr ; T , y) · dWr (2.6)

for s < t < T . By ((2.5), (2.6)) we have

⟨M, R⟩t =

∫ t

s
MrRrc(r, Xr ) · ∇ ln qb(r, Xr ; T , y)dr

and therefore

MtRt − ⟨M, R⟩t

is a martingale up to T , with MsRs = 1. Since both qb+c(s, x; T , y) and qb(s, x; T , y) possess the Gaussian bounds (see
.g. Aronson (1968), Stroock (1988)), therefore

qb+c(s, x; T , y)
qb(s, x; T , y)

= Px,y
s,T [RT ] = lim

ε↓0
Px,y
s,T [RT−ε]

= lim
ε↓0

Ps,x [MT−εRT−ε]

= 1 + Ps,x

[∫ T

s
MrRrc(r, Xr ) · ∇ ln qb(r, Xr ; T , y)dr

]
= 1 +

1
qb(s, x; T , y)

Ps,x

[∫ T

s
Rrc(r, Xr ) · ∇qb(r, Xr ; T , y)dr

]
,

hich completes the proof of the lemma. □

emma 4. Let β be a constant and y ∈ Ḡ. Let w(t, x) be the unique weak solution to the following non-linear parabolic
equation

∂

∂t
w =

1
2
∆w + β|∇w| for t > 0 and x ∈ G (2.7)

subject to the initial and boundary conditions that

∂

∂ν
w(t, ·)

⏐⏐⏐⏐
∂G

= 0 for t > 0, and w(0, x) = δy(x). (2.8)

Then both w(t, x) and its weak derivative ∇w(t, x) are Hölder continuous for t > 0 and x ∈ Ḡ, and for any given T > 0,

qV (t, x; T , y) = w(T − t, x) for 0 ≤ t < T and x ∈ Ḡ, (2.9)

where

V (t, x) = β
∇w(T − t, x)
|∇w(T − t, x)|

and V (t, x) = 0 for t ≥ T .

Proof. According to the theory of parabolic equations (see e.g. Ladyženskaja et al. (1968)), the problem ((2.7), (2.8)) has
a unique weak solution w(t, x) which is Hölder continuous for t > 0 and x ∈ Ḡ. We need a bit more regularity of the
solution w(t, x). To this end, for ε > 0 consider the semi-linear parabolic equation

∂

∂t
wε

=
1
2
∆wε

+ β

√
|∇wε|

2
+ ε2 for t > 0 and x ∈ G (2.10)

ubject to the same initial and boundary conditions (2.8). Then, there is a unique strong solution wε(t, x) for every ε > 0
hich is smooth for t > 0 and x ∈ Ḡ. Let wε

= ∇wε denote the space derivative. By taking derivatives in x for Eq. (2.10),
x

4
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x solves the Dirichlet boundary problem

∂

∂t
wε

x =

[
1
2
∆ + β

∇wε√
(∇wε)2 + ε2

· ∇

]
wε

x for t > 0 and x ∈ G

subject to the Dirichlet boundary condition along ∂G. Notice that⏐⏐⏐⏐⏐β ∇wε√
(∇wε)2 + ε2

⏐⏐⏐⏐⏐ ≤ |β|

is uniformly bounded, so according to Nash’s theory (see e.g. Nash (1958), or (Fabes and Stroock, 1986; Stroock, 1988)),
there is a convergent sequence

{
w

εn
x

}
with εn ↓ 0, which tends to the weak solution W to the parabolic equation

∂

∂t
W =

[
1
2
∆ + β

∇w

|∇w|
· ∇

]
W

ubject to the Dirichlet boundary condition along the boundary ∂G for t > 0. W is Hölder continuous in t > 0 and x ∈ G.
W is a modification of the weak derivative ∇w(t, x) for t > 0 and x ∈ G. We may thus conclude that ∇w(t, x) is Hölder
continuous in (0, ∞) × G.

Given T > 0, and the unique weak solution w(t, x) to ((2.7), (2.8)), u(t, x) = w(T − t, x) solves the backward parabolic
equation

∂

∂t
u +

1
2
∆u + β

∇w(T − t, ·)
|∇w(T − t, ·)|

· ∇u = 0 for t > 0 and x ∈ G (2.11)

ubject to the initial and boundary conditions that

∂

∂ν
u(t, ·)

⏐⏐⏐⏐
∂G

= 0 for t < T , and lim
t↑T

u(t, x) = δy(x). (2.12)

ince qV (s, x; t, y) is the fundamental solution of the linear parabolic equation

∂

∂t
u =

1
2
∆u + V (t, x) · ∇u

subject to the Neumann boundary condition at boundary ∂G, hence, (t, x) → ũ(t, x) =: qV (t, x; T , y) solves the backward
equation

∂

∂t
ũ +

1
2
∆ũ + β

∇w(T − t, ·)
|∇w(T − t, ·)|

· ∇ũ = 0 for t > 0 and x ≥ 0 (2.13)

ubject to the same initial–boundary conditions ((2.11), (2.12)). By the uniqueness, we must have ũ(t, x) = u(t, x) for
< T and x ∈ Ḡ. Hence

qV (t, x; T , y) = w(T − t, x) for t < T and x ∈ Ḡ. □

roof of Theorem 1

Now we have the major ingredients to prove Theorem 1. Let us explain the ideas leading to the conclusions in
heorem 1. According to the representation formula (2.4), it is apparent that the optimal probability qb(s, x; T , y) is
chieved when

c(r, x) · ∇xqb(r, x; T , y)

as a definite sign for any c(t, x) such that both |b + c| and |b| are bounded by κ . Thus for fixed T > 0 and y, we want
o find a vector field b(t, x), which may depend on T and y, such that |b| ≤ κ , and c(t, x) · ∇qb(t, x; T , y) is non-negative
resp. negative) for all t < T and x ∈ Ḡ for all c(t, x) satisfying that |c + b| ≤ κ . Clearly the best we can do is to choose
(t, x) such that

c(t, x) = A(t, x) ± κ
∇qb(t, x; T , y)
|∇qb(t, x; T , y)|

where A(t, x) = c(t, x)+b(t, x) so that |A(t, x)| ≤ κ . That is, the optimal vector fields should satisfy the functional equation

b±(t, x) = ±κ
∇qb± (t, x; T , y)

for t ≥ 0 and x ∈ Ḡ. (2.14)

|∇qb± (t, x; T , y)|

5
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Fig. 1. Derivative ∇w(t, x).

he question becomes to show the existence of such vector fields b±(t, x). Suppose such vector fields exist, then (t, x) →

u(t, x) := qb± (t, x; T , y) is the unique (weak) solution of the Neumann boundary problem to the backward equation

∂

∂t
u(t, x) +

1
2
∆u(t, x) + b±(t, x) · ∇u(t, x) = 0 for 0 < t < T and x ≥ 0 (2.15)

subject to the terminal condition that limt↑T u(t, x) = δy(x) and the boundary condition that ∂
∂ν
u(t, ·)

⏐⏐
∂G = 0. Together

ith (2.14), u(t, x) solves the initial and boundary problem to the semi-linear parabolic equation

∂

∂t
u +

1
2
∆u ± κ|∇u| = 0 for 0 < t < T and x ∈ G (2.16)

subject to the initial and boundary conditions above. By the general theory of parabolic equations, the previous problem
(2.16) has a unique weak solution, see e.g. Ladyženskaja et al. (1968). The proof is complete.

3. The HJB equation: one dimensional case

The solution w(t, x) to the HJB equation (with reflecting boundary) ((2.7), (2.8)) plays the dominating role in our
discussion, thus it is interesting to look for its properties in order to gain further knowledge about the optimal probability
qb(t, x; T , y) where |b| ≤ κ . We consider the case where G = [0, ∞) and y > 0.

Let β(= ±κ) be a constant. Recall that, for one dimensional case with G = [0, ∞), the HJB equation for our optimization
problem is the boundary problem

∂
w =

1
∆w + β|∇w| for t > 0 and x ≥ 0 (3.1)
∂t 2
6
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s

T

Fig. 2. Free boundary s(t) for fixed y > 0 demonstrating feature of ‘‘phase transition’’.

ubject to the initial and boundary conditions that

lim
x↓0

∂

∂x
w(t, x) = 0 for t > 0, and w(0, x) = δy(x). (3.2)

he solution w(t, x) > 0 for all t > 0 and x ≥ 0 by the maximal principle and wx(t, x) =
∂
∂xw(t, x) (for t > 0 and x ≥ 0)

is Hölder continuous in t > 0 and x ≥ 0.
To gain more explicit information about the optimal bounds in (1.6), we need to understand the space derivative

∂
∂xw(t, x). For t = τ > 0 is sufficiently small

w(τ , x) ∼=
1

√
2πτ

{
e−

(x−y)2
2τ + e−

(x+y)2
2τ

}
and

wx(τ , x) ∼= −
1

√
2πτ 3

e−
(x−y)2

2τ

{
x − y + (x + y)e−

2xy
τ

}
which implies that for τ > 0 small enough, wx has exactly one zero near y other than 0. According to the no-increasing
theorem of zeros (see e.g. Angenent (1988), Matano (1982)), there are at most one zero of wx(t, x) in (0, ∞) for every t > 0.
Let s(t) = max {x ≥ 0 : wx(t, x) = 0} for t > 0. Then s(t) > 0 for t > 0 but small. The simulations below demonstrate
that a phase transition takes place at some τy,β . For t < τy,β , the non-linear parabolic Eq. (3.1) may be described by a
two-phase free boundary problem

∂

∂t
w =

1
2
∆w + β∇w for 0 ≤ x ≤ s(t) and t ≤ τy,β

and
∂

w =
1
∆w − β∇w for x > s(t) and t ≤ τy,β .
∂t 2
7
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W
hile after time τy,β , the parabolic equation becomes one phase flow equation

∂

∂t
w =

1
2
∆w − β∇w for x > 0 and t > τy,β .

The numerical results of the derivative ∇w(t, x) for fixed β = 1 and y = 0, 1, 5, 10, respectively, and t ∈ [0.5, 5] and
x ∈ [0, 15] are shown in Fig. 1. Fig. 1 shows, as long as y > 0, there is at most one root other than 0 to the equation
wx(t, x) = 0 for every t > 0. For y > 0, there exists τ = τy,β > 0, such that there is exactly one s(t) > 0 for every
0 < t < τy,β such that wx(t, s(t)) = 0, and for every t ≥ τy,β there is no zero of wx(t, ·), i.e. wx(t, x) < 0, for any x > 0.
In Fig. 2, we have plotted the zeros s(t) for fixed y > 0 and β = 1. The point which s(t) crosses t-axis is the time τy,β . So
the initial and boundary problem ((3.1), (3.2)) may be equivalent to a free boundary problem.
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