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 A B S T R A C T

This paper explores the potential impacts of large language models (LLMs) on the Chinese 
labor market. We analyze occupational exposure to LLM capabilities by incorporating human 
expertise and LLM classifications, following the methodology of Eloundou et al. (2023). 
The results indicate a positive correlation between occupational exposure and both wage 
levels and experience premiums at the occupation level. This suggests that higher-paying and 
experience-intensive jobs may face greater exposure risks from LLM-powered software. We then 
aggregate occupational exposure at the industry level to obtain industrial exposure scores. 
Both occupational and industrial exposure scores align with expert assessments. Our empirical 
analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization 
hypothesis. We present a stylized theoretical framework to better understand this deviation 
from previous digital technologies. By incorporating entropy-based information theory into the 
task-based framework, we propose an AI learning theory that reveals a different pattern of LLM 
impacts compared to the routinization hypothesis.

1. Introduction

Recent remarkable progress in the field of generative AI and large language models (Bubeck et al., 2023; Zhao et al., 2023) has 
provoked many pressing questions about the effects of these powerful technologies on the economy. One of the most significant 
questions surrounding advances in generative AI and LLMs is the impact these technologies will have on the dynamics of the labor 
market due to the influence of LLMs on labor inputs. A branch of research emphasizing the disruptive labor market impacts of LLMs 
is emerging rapidly, however, it predominantly focuses attention on the labor market in developed economy, in particularly the 
U.S. (Brynjolfsson et al., 2023; Eloundou et al., 2023; Felten et al., 2023; Noy & Zhang, 2023; Peng et al., 2023). Nevertheless, 
countries differ in their labor market structures such as occupation and industry composition. Even for the same occupation, 
the detailed task composition or work content may exhibit great discrepancies across countries. Therefore, this paper analyzes 
the potential impacts of LLMs on China’s labor market. To construct our primary exposure index, we use a recently developed 
methodology to systematically assess which occupations are most exposed to LLMs in China. Specifically, we employ three large 
language models — GPT4 (OpenAI, 2023), InternLM (InternLM-Team, 2023), and GLM (Du et al., 2022; Zeng et al., 2022) — as 
classifiers to determine the occupational exposure based on the detailed description for each occupation contained in the general 
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code of occupational classification of the People’s Republic of China. We also employ expert annotators to explore the impacts of 
LLMs, to make comparisons, and to shed more light on this issue. Our key empirical findings are twofold. First, we empirically 
analyze occupational exposure to LLMs, highlighting the implications of heterogeneous occupational exposure. Second, we leverage 
these findings to assess the labor market demand exposure to LLMs across industries and demographic groups in China.

The analysis reveals significant heterogeneity in occupational exposure, with more educated, higher paid, white-collar occupa-
tions being the most exposed to LLMs. These results align with recent studies on the US labor market  (Eisfeldt et al., 2023; Eloundou 
et al., 2023), which also found that technological advancements disproportionately impact workers at the higher end of the wage 
spectrum. Beyond the positive correlation between wage, education, and occupational exposure, our findings indicate a positive 
correlation between experience premiums and exposure to LLMs, suggesting potential diminishing returns to ‘‘learning by doing’’ 
in the future.

To deepen these insights, we employed advanced language models (e.g., GPT-4, GLM, InternLM) to evaluate the quintet of 
occupations defined by Acemoglu and Autor (2011): Non-routine Cognitive (Analytical), Non-routine Cognitive (Interpersonal), 
Routine Cognitive, Routine Manual, and Non-routine Manual Physical. For each occupation, we calculated an aggregate exposure 
score by averaging sub-occupation evaluations. The results indicate that non-routine cognitive skills, particularly analytical ones, are 
most significantly affected by LLMs. Routine manual skills are also substantially influenced, whereas interpersonal and non-routine 
manual physical skills remain relatively unaffected.

This predominant impact on non-routine cognitive tasks deviates from the ‘‘routinization hypothesis’’ (Autor et al., 2003), 
which posited that ICT primarily automates routine, codifiable tasks performed by middle-wage workers. To explore the different 
occupational exposure patterns between traditional AI technologies and LLMs, we developed a theoretical model to shed light on 
the underlying mechanisms and policy implications.

Our analysis further indicates that the impacts of LLMs on China’s labor market are pervasive and diverse. Industry-level analyses 
reveal that education and healthcare have a higher level of exposure, while manufacturing, agriculture, mining, and construction 
show lower exposure. In contrast to other developed countries, the uneven age distribution across industries in China amplifies the 
demographic exposure to LLMs, disproportionately affecting younger workers.

Furthermore, LLMs significantly impact labor demand. Using an online job posting dataset, we constructed an occupational 
vacancy index. A positive correlation between vacancy shares and occupational exposure scores suggests that labor demand 
structures may exacerbate the disruptive impacts of LLMs on China’s labor market. The positive correlation between the growth 
rate of vacancy shares and exposure scores further indicates a potential reversal in labor demand trends. Contrary to expectations, 
China’s economic and labor market structure intensifies rather than mitigates the disruptive effects of LLMs.

Motivated by the unique occupational exposure of LLMs compared to earlier technologies, we introduce a novel theoretical model 
to examine why different technologies produce different occupational exposure structures. This model incorporates entropy-based 
information theory into a stylized task-based framework, which is particularly effective for characterizing comparative advantage. 
By defining task complexity using entropy and modeling the relative productivity of skills across occupations, we can systematically 
assess the efficiency of AI technologies, including LLMs, across various tasks.

The model also integrates KL-divergence to represent the relative efficiency of AI models across occupations, distinguishing 
the automation logic of traditional AI from that of deep learning-driven LLMs. This represents a significant advancement in AI 
technology. Finally, we discuss the theoretical and policy implications of LLMs inferred from our model, providing critical insights 
for navigating the future of labor markets.

The paper is structured as follows: Section 2 reviews the related literature, Section 3 discusses methods and data collection, 
Section 4 presents the main results, Section 5 introduces a theoretical model to further discuss the impacts of LLMs, and Section 6 
offers concluding remarks.

2. Literature review

Artificial Intelligence, like previous technologies, is poised to impact the economy in various ways, potentially fostering economic 
growth and reshaping the labor market structure (Furman & Seamans, 2019; Goldfarb et al., 2023). A substantial and expanding 
body of literature delves into the labor market consequences of artificial intelligence and automation technologies broadly defined. 
The skill-biased technological change framework (Acemoglu, 2002; Katz & Murphy, 1992), along with the task-based framework of 
automation (Acemoglu & Autor, 2011; Acemoglu & Restrepo, 2018; Autor et al., 2003) are often regarded as the foundational 
frameworks for comprehending technology’s impact on the labor market. This line of research has introduced the concept of 
routine-biased technological change, indicating that workers engaged in routine tasks face a heightened risk of displacement 
due to technological advancements. Numerous studies have demonstrated that automation technologies have contributed to both 
income inequality and job polarization, driven by declines in relative wages and employment for workers specializing in routine 
tasks (Acemoglu & Restrepo, 2022; Autor et al., 2006; Van Reenen, 2011). The influence of AI on work is anticipated to be multi-
faceted. Recent studies have made distinctions between task-displacement and task-reinstatement effects of technology, whereby 
new technology introduces novel occupations that bolster labor demand (Acemoglu & Restrepo, 2018, 2019).

Historically, prior research has predominantly adopted the task-oriented approach to analyze the labor market impacts of 
artificial intelligence. Various methods have been employed to evaluate the similarity between AI capabilities and the tasks 
performed by workers across different occupations. These methodologies encompass aligning AI capabilities with diverse skills 
and abilities demanded by distinct occupations (Felten et al., 2018; Tolan et al., 2021), mapping AI patent descriptions to 
worker task descriptions (Meindl et al., 2021; Webb, 2019), employing machine learning classifiers to estimate the potential for 
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automation across all occupations (Frey & Osborne, 2017), devising innovative rubric the suitability of worker activities by machine 
learning (Brynjolfsson et al., 2018), and leveraging expert forecasts (Grace et al., 2018).

Nevertheless, this line of research is becoming increasingly challenging due to the evolving and advancing capabilities of AI. 
Following recent breakthroughs in Generative AI and LLMs, there has been a growing body of studies investigating the specific 
economic impacts and opportunities presented by LLMs. For instance, Peng et al. (2023) conducted a study where software engineers 
were enlisted for a specific coding task, revealing that those with access to GitHub Copilot completed the task twice as quickly. 
Similarly, Noy and Zhang (2023) conducted an online experiment to explore the displacement effects of Generative AI on professional 
writing tasks. Additionally, Brynjolfsson et al. (2023) examined the effects of Generative AI on customer support agents. Pertinent 
to this paper, Felten et al. (2023) explored the heterogeneity in occupational exposure, while Eloundou et al. (2023) introduced 
a novel rubric to assess the impacts of LLMs on labor forces. Concurrently with this line of inquiry, we aim to characterize the 
potential relevance of LLMs to China’s labor market in particular.

Our theoretical model is based on the task-based automation framework (Acemoglu & Autor, 2011; Acemoglu & Restrepo, 2018; 
Autor et al., 2003). To better capture the unique characteristics of LLMs, we incorporate insights from information theory into this 
framework.

Information theory, originating from Shannon’s seminal work (Shannon, 2001), has been widely applied across various disciplines 
e.g. Cover (1999) and MacKay (2003). The emergence of deep learning has further expanded its relevance by enabling the 
representation of complex, nonlinear, and hierarchical data structures. Shannon’s maxim of ‘‘information first, then computation’’ 
inspires the integration of information theory into AI research, exemplified by the information bottleneck framework (Tishby et al., 
2000; Tishby & Zaslavsky, 2015). This framework formulates a learning objective grounded in information theory and prescribes 
algorithms to optimize it. Information theory has significantly advanced the understanding of deep neural networks, from practical 
applications like the variational information bottleneck (Alemi et al., 2016) to theoretical investigations of generalization bounds 
using mutual information (Xu & Raginsky, 2017). Recent work by Shwartz Ziv and LeCun (2024) unifies research on self-supervised 
and semi-supervised learning through an information-theoretic perspective, discussing optimal representations for neural networks. 
Notably, information theory has been employed to analyze LLM performance through ‘‘neural scaling laws’’ (Barnett & Besiroglu, 
2023; Hoffmann et al., 2022; Kaplan et al., 2020), which describe the relationship between compute, data, and model performance.

In econometrics, statistics, and economics, information theory has also proven valuable. Its core concept, entropy, quantifies 
uncertainty in random variables and complexity in transmitted information. Sims (2003) introduced a dynamic model of rational 
inattention, where agents face entropy-based costs in processing information. This approach, further developed by Maćkowiak et al. 
(2023), provides a flexible framework for modeling information constraints, with entropy serving as a tractable benchmark.

By integrating information theory into our task-based framework, we establish deeper insights into task automation and artificial 
intelligence. This approach allows us to characterize the relative productivity of skills and AI models across tasks using key concepts 
such as entropy, KL-divergence, and neural scaling laws. These tools enable a rigorous analysis, akin to the Cobb–Douglas production 
function, capturing the fundamental distinctions between traditional and advanced AI-driven automation.

3. Methodology of exposure scoring and data collection

3.1. Data on occupations in China

In order to assess occupational exposure scoring in China and facilitate standardized comparisons, a consistent occupational 
classification system is essential. The Occupational Classification Dictionary of the People’s Republic of China (OCD) version 2022, 
published by the National Bureau of Statistics of China (NBS) and the Ministry of Human Resources and Social Security of the People’s 
Republic of China (MOHRSS), provides such a classification system that serves as a standardized analytical tool for occupations. In 
particular, we utilize the general code of Occupational Classification of the People’s Republic of China 2022, which encompasses 
comprehensive information across 8 large categories, 79 medium categories, 449 small categories, and 1636 fine categories. This 
information, includes the definition of each occupation, the content and format of work activities, as well as specific description of 
the scope of work activities. We leverage the detailed descriptions of various occupations to facilitate the classification of online 
job vacancies into distinct occupational categories. To provide further clarity, a sample of occupations and their exposure to LLMs, 
categorized by medium categories, is presented in Appendix A.

3.2. Data on wages and vacancies

To acquire both vacancy and wage information, we leverage two datasets. Our primary data source is an online job posting 
dataset collected by the City Data Group. The dataset compiles online job postings spanning from January 2017 to December 2022, 
originating from major online job market platforms in China including zhaoping.com, 51job, 58.com, Ganji.com, Lagou.com, and 
Kanzhun. This comprehensive compilation encompasses over 800 million job openings across nearly 400 cities and 5.2 million 
employers. For each job vacancy entry within this database, we have access to a range of information: including the posting date, 
position type, occupation titles, the quantity of workers to be recruited, wage ranges (if specified), education requirements (if 
applicable), work experience prerequisites (if indicated), the name of the employing firm, the work location for the position, and 
the textual content of job descriptions. Following the classification of each job posting distinct occupations, we derive corresponding 
statistics encompassing the number of vacancies, the typical educational qualifications required for entry, and the wage structure 
within each occupation. The City Data Group frequently reviews the representativeness of the job vacancy postings it scrapes, to 
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ensure the information renders an accurate picture at least the online recruitment labor market. Obviously, the online recruitment 
labor market does not equal to the whole labor market; to gauge the nuance difference between online recruiting labor market 
and the overall labor market, the one precondition is a representative aggregate recruitment dataset. Since in China there is no 
representative recruitment dataset such as JOLTS in United States, therefore, we cannot speak too much about representativeness 
of online job recruitment compared with the overall recruitment. Although the potential unknown biased feature of job posting 
dataset, we believe large proportion of our main empirical results are immune to this potential bias. First, our key empirical task 
which is eliciting occupational exposure does not use online job posting data at all. We use online posting data to deliver three 
key information: vacancy numbers, the average wage rate and experience premium for each occupation. If different sectors are 
different reliance on online recruitment, indeed the more online recruitment reliant sector’s occupation will overestimate. However, 
the calculation of the average wage rate and experience premium for each occupation are robust to heterogeneous sectoral reliance 
on online recruitment.

Our second data source is the China Labor-force Dynamic Survey (CLDS) 2016, conducted by the Social Science Survey Center 
of Sun Yat-sen University. The CLDS surveys the working-age population to explore aspects such as education, employment, labor 
rights, occupational mobility, health, and well-being. The survey encompasses comprehensive industry and occupation information 
for each employment entry. Consequently, we can harness this dataset to construct an occupational intensity index for each industry. 
This index facilitates the acquisition of an exposure score at the industry level derived from occupational exposure scores. Further 
details regarding the occupational intensity index across 15 industry categories are presented in Appendix C.

3.3. Methodology of exposure scoring

To evaluate the likelihood of an occupation in China undergoing a disruptive shock due to the widespread availability and 
utilization of LLMs, we continue to adopt a task-based approach. We gauge the exposure of each occupation to LLMs based on 
the comprehensive occupation descriptions in Chinese, as documented the Occupational Classification Dictionary of the People’s 
Republic of China 2022. Building upon the exposure scoring methods proposed by Eloundou et al. (2023) which conceive 
an occupation as a collection of tasks, assess whether a given occupation can be executed more efficiently using ChatGPT or 
analogous LLMs. Our methodology employs three prominent large language models to determine exposure of various occupations. 
Specifically, we utilize Open AI’s GPT-4 model (OpenAI, 2023), the InternLM model developed by Shanghai AI Laboratory and Sense 
Time (InternLM-Team, 2023), and the GLM (Du et al., 2022; Zeng et al., 2022) to categorize occupations based on their complete 
set of occupational descriptions. Each of these models operates based on a comprehensive rubric for scoring LLMs exposure. We, 
then, submit an occupation’s description, in conjunction with its title, to each model. In response, each model provides an exposure 
score. These scores effectively capture whether the time required to complete a task could be halved while maintaining consistent 
quality, assuming a worker has access to ChatGPT-like LLMs. The Scores are divided into four categories: E0, E1, E2, and E3, the 
details of each category are presented in Appendix A.

Although we share similar methodologies with Eloundou et al. (2023), several caveats should be noted. First, all the occupational 
description and prompt are in Chinese, our exercise relies on capabilities of the Chinese large language models. To accomplish better 
Chinese language performance, we use two top Chinese large language models-GLM and InternLM-in addition to GPT4. Second, the 
Occupational Classification Dictionary of the People’s Republic of China contains only detailed work content and descriptions for 
each occupation. Therefore, it is infeasible to calculate exposure score at the task level as Eloundou et al. (2023). Instead, we choose 
to calculate exposure score directly at the occupation level.

OpenAI has pointed out several weaknesses of the method, such as the validity of the task-based framework, relative versus 
absolute measures, as well as forward-looking and changing nature of the scores. Another limitation we would like to discuss here 
is the randomness of LLM scoring. The same prompt can still yields different results from large language models, even with a higher 
temperature setting. In order to compensate for this issue, we first had each LLM model label each occupation 8 times and calculated 
the scores. We then took the average as the final scoring result for each LLM model for each occupation.

To compare the consistency of LLM scoring with human scoring, we invited a group of experts in economics and artificial 
intelligence to serve as judges. We provided them with descriptions of medium-category occupations in China and asked them to 
score each occupation according to the rating criteria. After collecting the scores from all of the experts, we calculated the average 
score for each occupation as the final human score. The rating criteria represented the proportion of labor input that large language 
models could save in each occupation. More details on expert evaluation is presented in Appendix A.

4. Results and assessment of impacts of LLMs on China’s labor market

4.1. Summary statistics

We employed the aforementioned methodology to gather results from GPT-4, GLM, and InternLM, subsequently assigning scores 
to the fine categories occupations. We designated E1 as 1 point, E2 and E3 as 0.5 points each, and E0 as 0 points. It is worth 
noting that the OCD encompasses 8 large categories, which also include 3 distinctive categories: ‘‘National institutions, party and 
mass organizations leaders’’, ‘‘Military personnel’’, and ‘‘Other personnel not classified elsewhere’’. In the subsequent sections, our 
results exclude these three categories of occupations, thereby focusing on 1606 fine-category occupations. The scores assigned to 
small-category, medium-category and large-category occupations represent the averaged scores of the occupations they encompass 
4 
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Table 1
Summary statistics of LLMs exposure.
 Fine categories occupation level exposure
 GLM InternLM GPT-4  
 count 1606 1606 1606  
 mean 0.44 0.18 0.24  
 std 0.26 0.18 0.21  
 Fine categories occupation level exposure corr.
 GLM InternLM GPT-4  
 GLM 1.0*** 0.284*** 0.1915*** 
 InternLM 0.284*** 1.0*** 0.2887*** 
 GPT-4 0.1915*** 0.2887*** 1.0***  
 Medium categories occupation level exposure
 GLM InternLM GPT-4  
 count 63 63 63  
 mean 0.40 0.14 0.22  
 std 0.15 0.10 0.18  
 Medium categories occupation level exposure corr.
 GLM InternLM GPT-4  
 GLM 1.0*** 0.5938*** 0.306*  
 InternLM 0.5938*** 1.0*** 0.4807*** 
 GPT-4 0.306* 0.4807*** 1.0***  

Fig. 1. Exposure score of LLMs and expert: corr. = 0.65.

from the higher level. A comprehensive summary of these metrics, along with the correlations between different models, is provided 
in the Table  1.

When examining the scoring across fine-categories occupations, GLM demonstrated an average of 0.44, while InternLM and GPT-4 
yielded averages of 0.18 and 0.24 respectively. This suggests that, on average, GLM ascribes stronger capabilities to LLMs and deems 
occupations to be more susceptible to LLMs exposure. Despite variations in the models’ scoring and comprehension of occupations, 
the scoring outcomes from three models exhibited noteworthy positive correlations. This held true across fine-category, small-
category, and medium-category occupations. We synthesized the outcomes from the three models, and throughout the subsequent 
5 
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Fig. 2. Exposure score on medium-category level: LLMs.

analysis, unless otherwise specified, we relied on the average scores generated by the three models based on medium-category 
occupations.

Upon comparing the model scores with the results of human expert scoring in Fig.  1, we observed substantial positive correlations 
between the model scores and human expert scores.

4.2. Occupational exposure

Fig.  2 provides an overview of the medium-category occupation exposure scores by LLMs. It is worth noting that within the 
highest exposure occupations, such as ‘‘Teachers’’, ‘‘Economic and financial professionals’’, and ‘‘Press, publishing and cultural 
professionals’’, a strong resonance emerges with recent technological advancements in LLMs, particularly in their capacity to 
handle a broad spectrum of intricate language-based tasks and even generate functional code based on high-level descriptions 
of a programming task. Moving to a broader perspective, the large-category occupation exposure scores by LLMs and expert are 
represented in Appendix B.

The results of our LLMs exposure scores indicate significantly different mechanisms and corresponding impacts on labor market, 
when compared with previous waves of computer-based automation. Prior research on computer-based automation posited that 
routine work was most susceptible to replacement by computers (Acemoglu & Autor, 2011; Autor et al., 2006). This ‘‘routinization’’ 
hypothesis assumed that ‘‘computers and computer-controlled equipment are highly productive and reliable at performing the tasks 
that programmers can script - and relatively inept at everything else’’. The displacement of routine jobs by computers led to a 
heightened demand for skilled workers in ‘‘abstract’’ jobs, resulting in wage inequality and job polarization. However, Fig.  3 suggests 
that the labor market repercussions resulting from recent advances in LLMs may diverge. Specifically, this wave of technological 
change distinguishes itself from earlier waves by potentially substituting numerous tasks within non-routine cognitive analytical jobs 
that were previously considered immune to automation. In essence, this development suggests a shift in the labor market landscape, 
where the winners and losers associated with general-purpose technology evolve.

Beyond the distinct impacts on routine and non-routine occupations, LLMs also reshape the experience premium profile. LLMs 
have the capacity to learn tasks requiring tacit knowledge, knowledge that was once attainable only through experiential learning 
or learning by doing. As depicted in Fig.  4, LLMs could potentially alter the experience premium and the profile of returns from 
learning. Our analysis aligns with the insights gleaned from an experimental study (Brynjolfsson et al., 2023).

4.3. Composite occupational exposure

In our study, we utilized advanced language models, including GPT-4, GLM, and InternLM, to evaluate the quintet of occupational 
categories defined by Acemoglu and Autor (2011). These composite occupational categories are: Non-routine Cognitive (Analytical), 
Non-routine Cognitive (Interpersonal), Routine Cognitive, Routine Manual, and Non-routine Manual Physical.

To derive the composite exposure scores, the models were tasked with repeatedly scoring various sub-elements within the 
occupational descriptions. The aggregate score for each composite occupation was then computed as the mean of these evaluations.
6 



Q. Chen et al. China Economic Review 92 (2025) 102413 
Fig. 3. Salary and exposure score (Medium-category): LLMs.

Fig. 4. Annual wage growth rate and exposure score (Medium-category): LLMs.

The analytical results, illustrated in Fig.  5, reveal that cognitive tasks, particularly those of a non-routine nature, are the 
most significantly impacted by large language models (LLMs). Routine manual tasks are also expected to experience considerable 
influence, while tasks classified as Interpersonal and Non-routine Manual Physical are less affected by these advanced models.
7 
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Fig. 5. Composite occupation and LLMs exposure.

This differential impact underscores the nuanced effects of LLMs across task categories. Notably, our findings diverge from the 
‘‘routinization hypothesis’’ (Autor et al., 2003), which posits that information and communication technologies (ICT) primarily 
automate ‘‘routine’’ codifiable tasks traditionally performed by middle-wage workers. In Section 5, we develop a theoretical model 
to further investigate the mechanisms driving the different occupational exposures of traditional technologies and LLMs.

4.4. Industrial and demographic exposure

As highlighted in the preceding Data section, we leveraged the 2016 CLDS dataset, which encompasses comprehensive industry 
and occupational information for each individual in employment. Utilizing this dataset, we derived the occupational distribution 
within each industry. This distribution, when coupled with the exposure scores attributed to the corresponding occupations, enabled 
the computation of a weighted occupational intensity index for each industry.

Fig.  6 provides insights into substantial variations in the exposure levels of LLMs across distinct industries. Notably, sectors with 
the highest scores, including education, culture and arts, radio, film and television, exhibit heightened susceptibility. This observation 
underscores the pronounced influence of the current technological landscape on these domains. Conversely, industries with lower 
scores, such as agriculture, forestry, husbandry, fisheries, mining, manufacturing and construction—persist in displaying a range of 
distinctive complexities. Despite the overarching advancements in artificial intelligence across diverse domains, these sectors present 
enduring challenges. Their intricate nuances, customized requirements, and the enduring necessity for human judgment contribute 
to their current resilience against full automation and replacement in the foreseeable future.

Armed with industrial exposure data, we proceed to compute demographic exposure by integrating it with the demographic 
distribution across industries. Relying on the tabulations of census data from 2020 in China, we observe a notable concentration of 
youth employment within the tertiary sector. To illustrate, during 2020, 42.5% of individuals aged 16–19 and 34.9% of those aged 
20–24 were engaged in consumer service industries. Fig.  7 showcases our demographic exposure scores, revealing that LLMs wield 
a more pronounced influence on the employment prospects of young individuals.

4.5. Vacancies

Figs.  8 and 9 offer a comprehensive overview of potential impacts on future labor demand within China. The presence of a 
positive correlation between occupational exposure and vacancy share, as depicted in Fig.  8, suggests that occupations with a higher 
vacancy share may potentially experience more pronounced disruptive effects from LLMs in the future. Contrary to the prevailing 
8 
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Fig. 6. Industrial exposure score: LLMs.

Fig. 7. Demographic exposure score: LLMs.

assumptions, the occupational structure in China tends to exacerbates rather than ameliorate the disruption caused by LLMs. Fig. 
9 unveils an additional layer of concern related to the disruptive effects of LLMs. The positive correlation between occupational 
exposure and growth rate of vacancy share implies that the advancements of LLMs could unexpectedly reverse the prevailing labor 
demand trend, thereby intensifying the structural unemployment predicament in the future.
9 
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Fig. 8. Share of vacancies and exposure score (2017–2022): LLMs.

Fig. 9. Growth rate of share of vacancies and exposure score: LLMs.

5. The model

This section introduces a theoretical framework designed to enhance understanding of task automation and its relationship 
with large language models (LLMs). Drawing on prior empirical findings, we have discerned a predominant impact of automation 
10 
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on occupations involving non-routine cognitive tasks. This observation marks a departure from earlier conclusions, such as those 
posited by Autor et al. (2003), which suggested that automation primarily affects occupations characterized by routine tasks. A key 
insight from our analysis is the pronounced effect of automation on occupations heavily reliant on non-routine cognitive analytical 
tasks, in contrast to the relatively minimal impact on manual physical tasks. Occupations involving interpersonal tasks demonstrate 
a moderate degree of susceptibility to LLMs, positioned between cognitive and manual tasks in terms of exposure. Additionally, our 
findings indicate a correlation between occupations with higher wage and experience premiums and their increased vulnerability to 
LLMs. This aligns with the recent research by Eisfeldt et al. (2023) and Eloundou et al. (2023), who have identified that technological 
advancements disproportionately affect workers in the higher echelons of the wage spectrum. To elucidate the varied patterns of 
occupational exposure to different technological advancements, our proposed theoretical model offers a nuanced perspective on the 
distinct mechanisms driving occupational automation. This model aims to bridge the gap in understanding the differential impacts 
of technology across various occupations.

The central thesis of our analysis hinges on the distinct technological attributes inherent to the traditional AI, deep learning 
AI, and LLMs AI. Essentially, our theoretical model posits that the unique patterns of occupational exposure observed are directly 
attributable to the underlying technological principles governing automation processes. To effectively articulate this proposition, 
we integrate the principles of information theory into our task framework. This integration facilitates a more comprehensive 
understanding of the disparities between various AI technological paradigms, particularly highlighting the differences in productivity 
between models based on traditional AI and those developed using deep learning AI and LLMs AI technology.

The structure of the theoretical section of our study is methodically organized as follows: Section 1 delineates the environments 
and competitive equilibrium within a stylized task model. This foundational subsection lays the groundwork for understanding the 
basic dynamics of task allocation and performance. Section 3 seamlessly integrates traditional AI technology into our task framework. 
This integration is instrumental in reexamining and substantiating the routinization hypothesis, which asserts that traditional AI 
technologies are predominantly applied to routine tasks. Section 4 is pivotal as it illuminates the distinct patterns of occupational 
exposure. It accomplishes this by elucidating the scaling laws characteristic of deep learning AI and LLMs AI technology. This 
subsection is critical in contrasting the logic of these advanced technologies with that of traditional AI, thereby offering a nuanced 
perspective on how technological advancements influence various occupational sectors differently.

5.1. The benchmark model

The benchmark model shares common basic settings with the other models, but it lacks task automation originated from the 
different technologies.

5.1.1. The environment
The unique final good is produced by combining a continuum of tasks represented by the unit interval [0, 1]. In particular, 

𝑌 = exp

[

∫

1

0
ln 𝑦 (𝑖) 𝑑𝑖

]

, (1)

where 𝑌  denotes the output of a unique final good and 𝑦 (𝑖) is referred to as the output of task 𝑖. We assume all markets to be 
competitive. Throughout, we choose the price of the final good as the numeraire.

Each task is produced by the following technology function 
𝑦 (𝑖) = 𝐴𝐿𝛼𝐿 (𝑖) 𝑙 (𝑖) + 𝐴𝐻𝛼𝐻 (𝑖)ℎ (𝑖) + 𝐴𝑀𝛼𝑀 (𝑖)𝑚 (𝑖) , (2)

where 𝐴 terms represent a factor-augmenting technology, and 𝛼 terms are the task productivity profiles, designating the productivity 
of low or high skill workers and models in different tasks. It is important to see that this production function for task services implies 
that each task can be performed by low or high skill workers and a technological model, but the comparative advantage of skill 
groups and different model differs across tasks which is captured by the 𝛼 terms. The differences in comparative advantage play a 
central role in a Ricardian model of the labor market.

In our analysis, the deliberate use of the term ‘‘model’’ instead of ‘‘capital’’ accentuates our focus on the intangible aspects of AI 
automation technologies. These models are distinguished by their unique technological logics. To deepen our understanding of the 
varying technological logics underpinning these automation technologies, we delve into the prominent discourse on ‘‘Software 1.0 
vs. 2.0’’, notably advanced by Andrej Karpathy, Sr. Director of AI at Tesla, in his 2017 Medium post titled ‘‘Software 2.0’’.

Software 1.0 represents the paradigm prevalent in traditional software development, employing languages such as Python, C++, 
among others. In this paradigm, programmers craft explicit instructions in the form of code, which the software executes. Each line 
of code is a directive that specifies a certain aspect of the program, guiding it towards a desired behavior.

Karpathy posits that the advent of neural networks, which are foundational to modern deep learning AI technology, heralds 
a paradigmatic shift in software development. According to him, Software 2.0 centers on compiling a dataset that defines the 
‘‘desirable behavior’’ or the problem to be solved. This is followed by establishing the basic structure or ‘‘skeleton code’’ of the 
neural network’s architecture. The network is then allowed to optimize itself for the solution. Crucially, Software 2.0 diverges from 
Software 1.0 in that it does not involve code written by programmers in the traditional sense. Instead, the ‘‘code’’ emerges from 
computations performed on large datasets.

This insightful discussion about the technological distinctions between traditional AI and deep learning AI or LLMs AI informs 
our categorization of models’ technologies into three paradigms: traditional AI, deep learning AI, and the LLMs AI.
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Our theoretical framework also incorporates two pivotal concepts from information theory. The first is entropy, which aids in 
defining the complexity inherent in each occupation. The second concept is the Kullback–Leibler divergence (KL-divergence), which 
is instrumental in specifying the productivity of different models. These concepts are critical for a nuanced understanding of the 
impact of various technological paradigms on different occupations.

Let us utilize concept of entropy to define complexity of different tasks and comparative advantage of skills. Let 𝑋 be a discrete 
random variable with probability mass function 𝑃 (𝑥). The entropy (or Shannon entropy) of 𝑋 is 

𝐻(𝑃 ) = 𝐸𝑃

[

log 1
𝑃 (𝑋)

]

=
∑

𝑥
𝑃 (𝑥) log 1

𝑃 (𝑥)
. (3)

Entropy is a quantification of uncertainty in a distribution. The higher the entropy of the distribution, the more information is 
contained in the realization of a random variable it governs. Let us assume that there exists a distribution function 𝑃𝑖 which 
characterize the relevant information in task 𝑖. Therefore, the complexity of a task 𝑖 is defined by entropy 𝐻𝑖 (𝑃 ). Furthermore, 
we assume that skilled worker has a comparative advantage in the more complex tasks. Specifically, we assume that 𝐻𝑖 is evenly 
distributed on the domain [0, �̄�] and �̄� = max{𝐻𝑖}. Now we can index task 𝑖 by their correspondent relative complexity 𝐻𝑖∕�̄� .

Assumption 1. 𝛼𝐿 (𝑖) =
(

1 −𝐻𝑖∕�̄�
)𝜂 = (1 − 𝑖)𝜂 and 𝛼𝐻 (𝑖) =

(

𝐻𝑖∕�̄�
)𝜂 = 𝑖𝜂 , 𝜂 > 0.

The Assumption  1 characterize the comparative advantage of skills across tasks. The implication of the assumption is that 
compared to unskilled workers skilled worker have a competitive edge on the complex tasks.

5.1.2. Competitive equilibrium without task automation
We will characterize the competitive equilibrium without task automation in the following. There will exist a threshold 𝐼 such 

that all tasks 𝑖 < 𝐼 will be performed by low skill workers, and all tasks 𝑖 > 𝐼 will be performed by high skill workers.

Lemma 1. In equilibrium, there exists a threshold 𝐼 such that 0 ≤ 𝐼 ≤ 1 and for any 0 ≤ 𝑖 < 𝐼 , ℎ (𝑖) = 0, for any 𝐼 < 𝑖 ≤ 1, 𝑙 (𝑖) = 0.

The competitive equilibrium can be characterized by the following four conditions:

1. Law of one price for skills 
𝑊𝐿 = 𝑝 (𝑖)𝐴𝐿𝛼𝐿 (𝑖) for any 𝑖 < 𝐼, (4)

𝑊𝐻 = 𝑝 (𝑖)𝐴𝐻𝛼𝐻 (𝑖) for any 𝑖 > 𝐼. (5)

2. Goods market (or task market) clearing condition demands: 
𝑝 (𝑖) 𝑦 (𝑖) = 𝑝

(

𝑖′
)

𝑦
(

𝑖′
)

= 𝑌 . (6)

In the interval 𝑖 < 𝐼 , the following equation is satisfied
𝑝 (𝑖)𝐴𝐿𝛼𝐿 (𝑖) 𝑙 (𝑖) = 𝑝

(

𝑖′
)

𝐴𝐿𝛼𝐿
(

𝑖′
)

𝑙
(

𝑖′
)

.

Combining with the condition of the law of one price for skills, we obtain 
𝑙 (𝑖) = 𝑙

(

𝑖′
)

for any 𝑖 < 𝐼, (7)

and 
ℎ (𝑖) = ℎ

(

𝑖′
)  for any 𝑖 > 𝐼. (8)

3. No arbitrage condition across skills: the threshold task 𝐼 can be profitably produced using either skilled or unskilled workers: 

𝐴𝐿𝛼𝐿 (𝐼) 𝑙 (𝐼) = 𝐴𝐻𝛼𝐻 (𝐼)ℎ (𝐼) . (9)

4. Labor market clearing condition: 

∫

𝐼

0
𝑙 (𝑖) 𝑑𝑖 = 𝐿, (10)

∫

1

𝐼
ℎ (𝑖) 𝑑𝑖 = 𝐻. (11)

By (7), (8), (10), and (11), we obtain that 
𝑙 (𝐼) = 𝐿∕𝐼, (12)

ℎ (𝐼) = 𝐻∕ (1 − 𝐼) . (13)
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Plugging (12), and (13) into (9), we can obtain 

𝐼 = 1∕
⎛

⎜

⎜

⎝

1 +
(

𝐴𝐻𝐻
𝐴𝐿𝐿

)
1

1+𝜂 ⎞
⎟

⎟

⎠

. (14)

Wage difference is determined by the productivity difference at the threshold
𝑊𝐻
𝑊𝐿

=
𝐴𝐻𝛼𝐻 (𝐼)
𝐴𝐿𝛼𝐿 (𝐼)

=
(

𝐴𝐻
𝐴𝐿

)1∕(1+𝜂)
(𝐻
𝐿

)−𝜂∕(1+𝜂)
.

The following proposition summarizes the equilibrium allocation and corresponding wage premium.

Proposition 1. The competitive equilibrium is characterized by a threshold condition 𝐼

𝐼 = 1∕
⎛

⎜

⎜

⎝

1 +
(

𝐴𝐻𝐻
𝐴𝐿𝐿

)
1

1+𝜂 ⎞
⎟

⎟

⎠

,

and labor allocations across occupations. In the domain 𝑖 ∈ [0, 𝐼], 𝐿∕𝐼 measure of unskilled workers are allocated to each task, meanwhile, 
In the domain 𝑖 ∈ [𝐼, 1], 𝐻∕ (1 − 𝐼) measure of skilled workers are allocated to each task.

The corresponding wage premium is 
𝑊𝐻
𝑊𝐿

=
(

𝐴𝐻
𝐴𝐿

)1∕(1+𝜂)
(𝐻
𝐿

)−𝜂∕(1+𝜂)
. (15)

The two terms on the right hand of previous Eq. (15) correspond to two forces in Tinbergen’s race: technology and education. The 
terms 

(

𝐴𝐻
𝐴𝐿

)1∕(1+𝜂)
 represents the impacts of the skill-biased technology change on the relative demand of skills, otherwise the terms 

(

𝐻
𝐿

)−𝜂∕(1+𝜂)
 embodies the impacts of the relative supply of skills which is determined by education.

5.2. The model with different AI technologies

In this subsection, let us introduce the automation model with different AI technologies to perform a task.

5.2.1. The comparative advantage of traditional AI
The primary innovation of our theoretical construct is the nuanced elucidation of the comparative productivity advantage of 

various models in specific tasks, as informed by information theory. This study systematically considers models grounded in three 
technological paradigms: traditional AI, deep learning AI, and large language models (LLMs) AI. Each model, underpinned by 
these divergent technologies, has been rigorously trained to manifest optimal task-specific behavior, achieving a level of precision 
that renders any distinction between the model’s performance and an idealized version of task execution virtually undetectable. 
Consequently, the accuracy of a model’s performance is directly proportional to its productivity in automated tasks. Hereafter, we 
denote all endogenous variable in this economy with an upper dagger.

A fundamental postulate of this research is that the inability to distinguish between a model’s output and the theoretically 
perfect execution of a task denotes competence. This principle is a cornerstone in the behavioral evaluation of machine intelligence, 
epitomized by seminal tests such as Turing’s Imitation Game.

Specifically, we resort to the foundational concept in information theory. KL-divergence, also known as relative entropy, 
quantifies how different two distributions 𝑃  and 𝑄 are. It is arguably a central pillar of information theory. The KL-divergence 
between 𝑃  and 𝑄 is 

𝐷 (𝑃 ∥ 𝑄) =
∑

𝑥
𝑃 (𝑥) log

(

𝑃 (𝑥)
𝑄(𝑥)

)

. (16)

Intuitively, larger log likelihood ratios log
(

𝑃 (𝑥)
𝑄(𝑥)

)

 reflect distributions that are more different. KL-divergence aggregates these log 
likelihood ratios by weighting them with respect to their probabilities under a reference distribution. Now we can define a model’s 
KL-divergence 𝐷𝑖 where 𝑃𝑖 is the information distribution embodied in a model performing task 𝑖 and 𝑄𝑖 is the information 
distribution that a best model can achieve.

Now we can resort to we KL-divergence to characterize the productivity profile 𝛼𝑀 (𝑖). Let assume that for each task, we have a 
productivity upper bound �̄�, and productivity in task 𝑖 for a model with traditional AI is

𝛼𝑀 (𝑖) = 𝐹
(

�̃�𝑖
)

=
(

1 − �̃� (𝑖) ∕�̄�
)𝜇 , 𝐴𝑚 = �̄�,

Let us assume that �̃�𝑖 is evenly distributed on the domain 
[

0, �̄�
] and �̄� = max{�̃�𝑖}, therefore,

𝛼 𝑖 = 1 − 𝑖 𝜇 ,
𝑀 ( ) ( )
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which implies that the model tends to have a higher productivity in less complex tasks. Furthermore, to ensure an internal solution, 
we assume that

�̄� > 𝐴𝐿, 𝜇 > 𝜂.

We also impose a exogenous price of models 𝑀 as 𝐹 .
The aforementioned assumption elucidates the underlying technical rationale inherent in traditional AI. Drawing an analogy 

with the paradigm of software 1.0, this technology facilitates task automation by encoding explicit rules pertinent to a specific task. 
It is evident that the process of encoding rules is considerably more straightforward in tasks of lesser complexity. In contrast, 
for more complex tasks where rules are either excessively intricate or ambiguously defined, the codification process becomes 
substantially more challenging. Hence, our postulation aligns with the routinization hypothesis, which posits that traditional 
AI models demonstrate a comparative advantage in automating routine or less complex tasks. Consequently, in line with these 
assumptions, our analysis reaffirms the routinization hypothesis, indicating a tendency for models based on traditional AI to 
predominantly automate routine tasks.

Proposition 2. In competitive equilibrium, there exists two threshold 𝐼1 and 𝐼2 such that 0 < 𝐼1 < 𝐼2 < 1 and for any ≤ 𝑖 < 𝐼1, 
𝑙 (𝑖) = ℎ̃ (𝑖) = 0, for any 𝐼1 < 𝑖 < 𝐼1, ℎ̃ (𝑖) = �̃� (𝑖) = 0, for any 𝐼2 < 𝑖 ≤ 1, 𝑙 (𝑖) = �̃� (𝑖) = 0. Furthermore, the wage premium increases.

Proof. see appendix.
Proposition  2 in our study reveals that models leveraging traditional AI technology are inclined to replace routine tasks, typically 

executed by unskilled workers. This leads to a reduction in the task domain available to unskilled workers, subsequently widening 
the wage disparity between skilled and unskilled labor.

5.2.2. The comparative advantage of deep learning AI and LLMs AI technology
In this subsection, let us introduce the automation model with deep learning AI and LLMs AI technology to perform a task. We 

use the hat operator to indicate endogenous variables in this economy.
At present, in the realm of artificial intelligence, Large Language Models (LLMs) represent the most advantageous form of 

generative artificial intelligence. These AI systems, designed to predict subsequent words based on preceding text, are further refined 
through fine-tuning to align with human instructions and preferences. LLMs are distinguished by their foundation in deep neural 
networks, boasting an expansive range of billions, or even trillions, of parameters in cutting-edge models. This positions both deep 
learning AI and LLM AI models firmly within the realm of the ‘‘Software 2.0’’ paradigm, characterized by a shift towards data-driven 
learning and adaptive algorithms.

The advent of transformer models, as introduced by Vaswani et al. (2017), marks a pivotal development in the evolution of 
LLMs. Transformers incorporate an ‘‘attention mechanism’’ that dynamically assigns varying levels of significance to different words 
within a text. This innovation significantly enhances the model’s ability to decipher complex patterns and dependencies in language, 
thereby improving the efficiency and interpretative capabilities of language models.

Now let us assume that deep learning AI and LLMs AI models represent a distinct technological logic. Still we assume that 
KL-divergence is a measurement of productivity loss. Let assume that for each task, we have a productivity upper bound �̄�, and 
productivity in task 𝑖 for an AI model are

𝛼𝑀 (𝑖) = 𝐹
(

�̂� (𝑖)
)

=
(

1 − �̂� (𝑖)
)𝜂 , 𝐴𝑚 = �̄�,

where 
�̂� (𝑖) = 𝐿 (𝑁,𝐺) = 𝐶 + 𝑎

𝑁 (𝑖)𝛼
+ 𝑏

𝐺𝛽 . (17)

Let us assume there is a different data accumulation pattern across task. Now assume that 𝑁 (𝑖) = �̄� , if 𝑖 ∈
[

𝐼, 𝐼
]

, and 
𝐼 < 𝐼 < 𝐼 < 1 and 𝑁 (𝑖) = 0, if 𝑖 ∉ [

𝐼, 𝐼
]

. A key conceptual contribution from the field of AI, particularly relevant to this discussion, is 
encapsulated in (17), which represents a well-established empirical regularity known as the scaling law. This concept, highlighted in 
recent AI literature by researchers such as Barnett and Besiroglu (2023), Hoffmann et al. (2022) and Kaplan et al. (2020), articulates 
a parametric form for Kullback–Leibler divergence. This divergence is expressed as a power law in terms of data (𝑁) and parameter 
count (𝐺), with 𝐶 denoting the irreducible loss, and 𝑎, 𝑏, 𝛼, and 𝛽 are constants. The robustness of these relationships is underscored 
by their persistence across various orders of magnitude. Furthermore, power-law scaling laws have been identified as a ubiquitous 
presence in the deep learning AI and LLMs AI domain, with their application extending to areas like auto-regressive modeling and 
reinforcement learning, and have been the subject of extensive theoretical investigation.

Given that deep learning AI and LLMs AI models exhibit similar power scaling laws, our focus can be directed specifically 
towards LLMs AI without a significant loss of generality. In the ensuing analysis, we conceptualize technological changes in LLMs 
as a substantial increase in the parameter count 𝐺, facilitating the execution of tasks within the specified domain [𝐼, 𝐼] by LLMs. 
This approach allows for a nuanced understanding of the impact and potential of LLMs AI in transforming various task domains.

5.3. Discussions

In this subsection, we discuss our model with specific AI Applications. And we also elaborate theoretical and policy implications 
from theoretical model furthermore.
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5.3.1. Discussions with AI applications
The healthcare industry has long been a dynamic testing ground for cutting-edge AI capabilities. Recent advances in large 

language models (LLMs) have enabled these systems to acquire broader competencies, allowing for application across a wide range 
of healthcare tasks. Given the pervasive use of text in healthcare practices, healthcare-specific LLMs, trained on extensive medical 
language data, have demonstrated exceptional performance in processing medical texts, conducting dialogues, making diagnoses, 
and supporting education and consultation. We focus here on two particular applications: medical diagnosis and report generation.

LLMs have been employed to predict the most likely diagnoses based on medical tests and patients’ personal descriptions. These 
models have proven effective in enhancing diagnostic processes, showing strong generalist abilities across various diseases. Despite 
their diagnostic potential, LLMs still face significant challenges. The lack of transparency — where clinicians are unable to fully 
trace the reasoning behind a model’s decisions — remains a key concern in medical practice.

LLMs have also demonstrated remarkable potential in generating medical reports, such as radiology reports, discharge summaries, 
and referral letters. These models excel at synthesizing information from a variety of sources, including electronic health records 
(EHRs), medical literature, and clinical guidelines, to produce coherent, informative reports. Medical report generation is often a 
tedious and time-consuming task for doctors; thus, the use of LLMs can significantly alleviate their workload.

While these applications confirm that both medical diagnosis and report generation require highly skilled expertise, LLMs are 
showing the potential to empower a broader group of workers to perform these expert tasks. As AI continues to evolve, it could 
ultimately complement and enhance the judgment of professionals, broadening the scope of tasks that non-experts can manage. 
This trend is applicable beyond healthcare, suggesting that LLMs can enable more workers to perform complex, high-stakes tasks 
by augmenting their skills and supporting their professional judgment.

Our theoretical model aligns with this vision. We predict that LLMs will reshape the value and nature of human expertise, helping 
to narrow the income inequality between skill levels. Several recent empirical studies corroborate this perspective. For example, 
a controlled experiment by Peng et al. (2023) found that GitHub Copilot, a generative AI programming aid, significantly boosted 
productivity: the group using Copilot completed programming tasks approximately 56% faster than the control group without access 
to the tool. Similarly, a study by Noy and Zhang (2023) found that access to ChatGPT improved the speed and quality of writing 
tasks among professionals such as marketers, grant writers, consultants, and managers. The ChatGPT group reduced the time spent 
on tasks by 40%, and even the least skilled writers in this group performed as well as the median writer in the control group—
highlighting a significant boost in writing quality. Moreover, ChatGPT allowed the most capable writers to work faster and enabled 
the less capable to not only write faster but also to improve the quality of their output. This narrowing of the productivity gap 
underscores the potential of LLMs to democratize expertise.

To understand the fundamental difference between traditional AI and modern deep learning-based LLMs, we need to focus on 
the underlying technological logic. Both AI models and machines require software code to execute tasks. In traditional AI, this code 
follows a rule-based structure: developers must explicitly define each step in the process, particularly for tasks that are repetitive 
or relatively simple. This makes routine, less complex tasks more susceptible to automation.

In contrast, deep learning AI and LLMs follow a data-driven methodology. Developers no longer need to predefine the rules; 
instead, they feed vast datasets into an algorithm, which then learns to perform tasks. For instance, ChatGPT does not rely on 
specific, preset rules for generating poetry; it learns this skill through exposure to an enormous amount of language data. This 
data-driven approach enables deep learning AI and LLMs to tackle tasks that lack clear, codifiable rules—typically found in more 
complex, skilled domains. Consequently, LLMs are more suited to automating tasks traditionally performed by skilled workers, rather 
than simple, rule-based jobs.

5.3.2. Theoretical and policy implications
Our model incorporates entropy-based information theory into a stylized task-based framework. This task-based model is well-

suited to characterizing comparative advantages. To analyze the comparative advantage of skills and technologies, we need a 
consistent way to define the productivity profiles of skills and technologies across occupations. Specifically, we characterize task 
complexity using the concept of entropy and define the relative productivity of skills across occupations with varying complexity 
levels.

Furthermore, the introduction of KL-divergence allows us to model the relative efficiency of AI models across occupations. The 
central idea is that cognitive tasks, at their core, involve making predictions—such as forecasting GDP growth, predicting stock 
prices, or generating responses in the case of LLMs. Intuitively, the productivity of cognitive tasks is determined by prediction 
accuracy, which we represent through KL-divergence. KL-divergence is also used in the ‘‘neural scaling laws’’ to measure an AI 
model’s prediction accuracy, which gives task performance a solid foundation by directly borrowing well-established AI technological 
principles and bridging them with information theory.

Our theoretical framework uniquely integrates information theory into a stylized task model. This integration accomplishes dual 
objectives. Firstly, it enables the application of concepts like entropy and KL-divergence to quantify the complexity of tasks and 
the efficacy of algorithms in specific tasks. Secondly, information theory acts as a conduit, linking economic models with the body 
of literature in computer science. This synthesis provides a robust micro-foundation for the understanding of deep learning AI and 
LLMs AI technology.

In our theoretical model, the key distinction between traditional AI and LLMs as automation technologies lies in their operational 
logic: traditional AI depends on pre-programmed rules to perform tasks, while LLMs leverage neural scaling laws and data-driven 
methods. This fundamental difference in technological logic results in varying comparative advantages across tasks. Traditional AI 
15 



Q. Chen et al. China Economic Review 92 (2025) 102413 
excels at performing less complex tasks typically carried out by unskilled workers. The automation of such tasks increases wage 
premiums between skilled and unskilled workers by eroding the position of unskilled workers.

In contrast, LLMs, powered by neural scaling laws and vast amounts of data and computational resources, exhibit a comparative 
advantage in data-intensive and complex tasks, usually performed by skilled workers. This shift erodes the expertise position of 
skilled workers and leads to a more flattened wage distribution between skill levels.

The overarching insight from our theoretical model is that algorithms, based on distinct technological logic, are predisposed to 
disrupt different types of tasks. These variances in technological underpinnings will inevitably result in divergent outcomes in terms 
of productivity and income distribution. This distinction is why the progression of LLMs AI technology will generate outcomes that 
deviate from those predicted by the routinization hypothesis. Fundamentally, the influence of LLMs AI technology on labor markets 
is anticipated to be distinctly different from that of traditional AI. In essence, this era of technological advancement represents a 
departure from past trends.

6. Discussions and conclusions

The utopian vision of the information age anticipated that computers would democratize information and flatten economic 
hierarchies. However, this vision has not materialized; instead, the opposite has occurred. Labor income inequality has widened 
significantly, with computerization facilitating the unprecedented concentration of decision-making power among elite experts, who 
now have access to abundant and inexpensive information (Deming, 2021). Our theoretical model predicts that artificial intelligence, 
by leveraging vast datasets and computational power to synthesize information and rules, could enable a broad range of workers 
equipped with foundational training to perform high-stakes decision-making tasks. These tasks, traditionally monopolized by elite 
experts — such as doctors, lawyers, software engineers, and college professors — may become accessible to more individuals. In 
this regard, our theoretical perspective suggests that artificial intelligence has the potential to reduce income inequality, contrary 
to the trends observed with earlier technologies.

Ge and Yang (2014) documented that between 1992 and 2007, during a period of rapid economic growth in China, the average 
real wage increased by 202%, accompanied by a sharp rise in wage inequality. While job polarization did not occur in China, the 
wages of elite experts rose dramatically, indicating that information technology has played a significant role in exacerbating income 
inequality. Our theoretical model applies to this context as well, reflecting the mechanisms by which technological advancements 
affect wage distribution. These results align with the broader discussions on technological impacts, as noted by Autor (2024). To 
summarize, our theoretical model aims to interpret the differing implications of various technologies on income inequality based 
on their distinct features. In this sense, we believe the model captures at least part of the momentum shaping labor market demand 
in China.

In terms of policy implications, our theoretical findings for artificial intelligence should be viewed as scenario analyses rather than 
definitive predictions. The impact of any technology depends not only on its inherent features but also on institutional responses. 
The first policy implication of our model is the disruptive impact of advanced AI technologies, such as LLMs, on expert labor. AI 
has the potential to reduce scarcity by empowering more workers to perform expert-level tasks. However, this potential will not 
be realized automatically. For example, a recent experiment found that providing AI assistance to radiologists did not improve 
diagnostic quality, even though AI predictions were at least as accurate as those of two-thirds of the doctors studied (Agarwal et al., 
2023). This outcome occurred because doctors often overrode AI predictions, highlighting their lack of understanding of how to use 
the tools effectively. Thus, a key policy orientation for the future is to develop training programs that enable workers to effectively 
utilize AI tools.

The second policy implication concerns the substantial uncertainties surrounding the technological impacts on labor markets, as 
evidenced by the unrealized utopian vision of the information age. To design effective policy tools, it is crucial to systematically track 
labor market demand conditions. Unlike the U.S., which has a system like ONET, China currently lacks a comprehensive statistical 
framework to monitor occupational demand. Establishing such a system should be a priority, given the impending disruptive waves 
of AI technologies.

As a general-purpose technology, the introduction and proliferation of large language models constitute a substantial technologi-
cal upheaval with significant implications for the overall economy. This paper employs measures of occupational exposures to LLMs, 
in conjunction with aggregate assessments of occupational composition, to evaluate the potential impact of LLMs on labor market 
within China’s economy. Our findings suggest that the potential effect of the release of LLMs could have a substantial effect on the 
Chinese labor market, potentially altering previous labor demand trends. LLMs indeed represent a noteworthy shock to the Chinese 
labor market. Furthermore, we develop a theoretical model to provide a deeper understanding of the reasons behind occupational 
exposure to LLMs, which diverges from the prediction of the routinization hypothesis.
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