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Abstract In this paper, we investigate a class of nonlinear backward stochastic differential
equations (BSDEs) arising from financial economics, and give the sign of corresponding
solution Z. Furthermore, we are able to obtain explicit solutions to an interesting class of
nonlinear BSDESs, including the k-ignorance BSDE arising from the modeling of ambiguity
of asset pricing. Moreover, we show its applications in PDEs and contingent pricing in an
incomplete market.
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1. Introduction

It is well known that in the seminal paper [17], Pardoux and Peng studied nonlinear backward
stochastic differential equations (BSDEs)
Y, = —g(t, Vi, Z)dt + Z,dB,, Yp =&,

where B is a Brownian motion on a probability space (£2,F,P), T >0 and ¢ is integrable.
They proved, under some assumptions on the nonlinear driver g and the terminal value £, that
BSDE (1.1) has a unique solution pair of adapted processes Y and Z satisfying stochastic
integral equation:

T T
Yt:§+/ g(s,YS,ZS)ds—/ Z.dB,, 0<t<T. (1.1)
t t
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Since the publication of [17], many researchers have worked on the theory of BSDEs and have
obtained many results about the solution pair (Y3, Z;). The theory of BSDEs has been applied to
mathematical finance, stochastic control, partial differential equations, stochastic game, and so on,
see, for example, [5, 8, 10, 13, 14, 19] and the literature therein.

In mathematical finance and economics, the solution (Z;) usually represents the amount of
risk assets (see [10] for details). On the other hand, (Z;) is related to the optimal control in
stochastic control, see [22] for example. So it is important to have an explicit expression for the
solution of BSDE (1.1). Moreover, the sign of solution (Z;) is also important for models in
mathematical finance, which allows us to identify the monotone ranges of active hedging.
Furthermore, it can help obtain the explicit solution of particular nonlinear BSDEs when
g(z) = k|z|. Therefore, researchers are interested in determining the zeros of (Z;) for such BSDE
models, i.e., the nodal set of the process (Z;).

In the present paper, we study the Markovian case of BSDE (1.1). That is, the driver in
formulating the BSDE is a deterministic real function g(¢,y,z) for (¢,y,2) € [0,7] x R x R, the
terminal value is £ = ¢(Br). We show the sign of (Z;) for these kinds of Markovian BSDEs.
Furthermore, we give the explicit solutions of the following nonlinear Markovian BSDE when
g(t,y,z) = k|z|, which is the k-ignorance model arising from modeling the ambiguity of asset
pricing (see Chen and Epstein [5] for details):

T T
Yt:sa(BT)Jr/ k|Zs|ds—/ Z,dB,, (1.2)
t t

where k > 0 is a constant. Note that BSDE (1.2) is perhaps the simplest nonlinear BSDE, but
its explicit solution is important in many fields. For example, the explicit solution of BSDE (1.2)
can give the explicit representation of the min-max price of the contingent claim &. For this aspect,
the reader can also refer to Chen and Epstein [5] and the literature therein. Additionally, BSDE
(1.2) is related to the study of the nonlinear central limit theorem. A recent work of Chen and
Epstein [6] obtains a new nonlinear central limit theorem. They prove that the limit of a
sequence of random variables (whose joint distribution is described by a set of measures) is
defined by the nonlinear BSDE (1.2). Thus, it is important to get the explicit solution of BSDE
(1.2) so that the central limit theorem proposed by Chen and Epstein [6] has an explicit limit.

Though explicit solutions to BSDE (1.1) are important in many fields, they are known only in
few cases, mainly in the case where g(t,y,z) is linear in y and z. For a nonlinear driver
g(t,y, z), little is known about (Y%, Z:) due to the lack of an explicit formula. Chen et al. [4, 7]
show that if £ = ¢(Br) and ¢ is monotonic, then the solution pair (Y, Z) of BSDE (1.2) can
be computed explicitly. In their paper, they observe that BSDE (1.2) can be reduced to an
equivalent linear BSDE, so that an explicit formula is obtained according to Girsanov’s formula.
If ¢ is not monotonic, it remains open to find the explicit solution to BSDE (1.2).

The main difficulty in this paper is that the driver g(z) = k|z| in BSDE (1.2) is nonlinear in
z and is only Lipschitz continuous but not differentiable. We cannot use the FeynmanXKac’s
formula in [18] directly to analyze this nonlinear BSDE, since in their paper the solution of the
corresponding partial differential equation (PDE) in this case is the viscosity solution. Moreover,
since few works can be referred to when ¢ is not monotonic, we don’t know whether it can be
reduced to a linear BSDE. To overcome this difficulty, we use the property of weak solution to quasi-
linear parabolic equations and establish the FeynmenXKac formula for the nonlinear BSDE
(1.2). First, by using Feynman-Kac’s formula [18] and analyzing the corresponding PDE, we
obtain the sign of the solution (Z;) of BSDE (1.1) in the Markovian case when & = ¢(Br) and
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¢ is a symmetric function satisfying some regular conditions. Second, using Feynman¥ac’s
formula established for BSDE (1.2), we explore the sign of (Z;) when g(z) = k|z| through analyzing
the corresponding PDE to BSDE (1.2). Thus, using Tanaka’s formula, we finally give an explicit
representation of the solution (Y3, Z;) for the nonlinear BSDE (1.2) (see Theorem 3.4 in the
following).

As applications, we give the closed-form (see (3.26) and (3.27) in Corollary 3.2) of the explicit
solutions of BSDE (1.2) when ¢(z) = Ija)(x) with a,b € (—00,00). We point out that when
@(x) = Ijqp) (), the explicit solution Yy of BSDE (1.2) is the maximal distribution of the semi-
martingale (Br + fOT psds) over the set {—k < p: <k}, ie.,

T

Yo= max P(agBT+/ usds<b>,
{—k<ps<k} 0

where ug is Fs-adapted process. Moreover, we give an example of the explicit solution of BSDE

(1.2) when ¢(z) = z2. In this case, the solution Y; is related to the bounded-velocity control

problem proposed and also solved by Benes et al. [2].

The paper proceeds as follows. In section 2, we briefly introduce notation and a few basic facts
about BSDEs, which will be used throughout the paper. In section 3, we give the main results of
the paper. First, in subsection 3.1, we study the sign of (Z;) for nonlinear BSDEs (1.1) in the
Markovian case. Moreover, we establish a FeynmanKac formula for Aignorance BSDE (1.2)
and show its sign of Z. Second, in subsection 3.2, we give the explicit solution of BSDE (1.2)
when ¢ is a symmetric function, especially for ¢(z) = I} (2). In section 4, we first show its
applications to BSDEs and PDEs. Then we apply the explicit solutions to show the maximal
and minimal contingent price in an incomplete market.

2. Preliminaries

In this section, we briefly recall some basic results on BSDEs and establish notation we will use.
Let (B:)i>0 be a standard one-dimensional Brownian motion on a probability space (€2, F, P),
let (F:) be the o-filtration generated by the Brownian motion, that is, F; = 0{B;0 < s <t}
for ¢t > 0.

The driver in formulating the BSDE in this paper is a deterministic real function g¢(¢,y,2) for
(t,y,z) € [0,T] x R x R, which satisfies the following conditions:

(A.1) Lipschitz condition. There exists a constant k > 0, such that

l9(t,y1,21) — 9(t,y2, 22)| < k(|ly1 — 2| + [21 — 22]) (2.1)

for all t >0, y1,y2 € R, and 21,20 € R.
We use the standard notation that L?(Q, F;, P) denotes the space of JF;-measurable and square-
integrable random variables on (€2, F, P) for each t > 0. Set
T
/ lug|2dt| < oo} .
0

The fundamental result obtained in Pardoux—Peng [17] is the following. If ¢ satisfies (A.1),
and & € L%(Q, Fr, P), there is a unique pair of adapted processes Y,Z € M(0,T,R) which
solves BSDE (1.1). We are interested in the Markovian case, that is, the terminal value ¢ in
BSDE (1.1) depends only on Br, i.e.,

M(0,T,R) := {(vt)te[oj]: real valued (F;)-adapted process with FE
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T T
Y: = o(Br) —l—/ 9(8,Ys, Zs)ds — / Z,dB;,. (2.2)
t ¢

In the following, I4 represents the indicator functions on event A; Ep[]| denotes the
expectation under probability measure P, Eg[] is the expectation under probability measure
Q; the function sgn(z) we use is defined by

1, x>0,
sgn(#) =9 1 L <o,

3. Main results

In this section, we establish main results. In the first subsection, we show the sign of (Z;) for
BSDE (2.2) under some regular conditions on ¢ and g. Through the same method, we obtain
the sign of (Z;) when the driver is g = k|z| by establishing the Feynman—Kac formula for this
particular diver. In the second subsection, using the sign of (Z;) and Tanaka’s formula, we give
the explicit solutions of BSDE (2.2) when ¢(z) = k|z|. Assume that ¢ used in our main result
satisfies the following condition:

(H.1) There is ¢ € R, ¢ is symmetric about ¢, that is, p(c —x) = p(c+ ) for all = € R.

3.1 The sign of (Z) for nonlinear Markovian BSDEs

Here, we prove the first result of the paper, which regards the sign of (Z;) for BSDE (2.2). Tt
can also be stated as a “non-vanishing theorem,” which is useful in our discussions in the latter
part of the paper.

Theorem 3.1 Let (Y, Z;) be the unique solution pair of BSDE (2.2). Assume that

(i) ¢ € C3(R) satisfies (H.1) for some c € R, and ¢ (where i =0,1,2,3 ) have at most
polynomial growth;

(ii) g€ C’;’g(R+ x R?) satisfies (A.1), and g(t,y,-) is symmetric at 0, that is, g(t,y,z) =
g(t,y,—z) forall t >0, y, z € R.

Then Y;, Zy are continuous adapted processes and the following conclusions hold.

(1) If ¢'(x) >0 and ¢'(z) Z0 for all x> c, then sgn(Z;) =sgn(By —¢) for all t > 0 almost
surely;

(2) Similarly, if ¢'(x) <0 and ¢'(x) Z0 for all x > c, then sgn(—Z2;) = sgn(B; — ¢) for all
t >0 almost surely.

Remark 3.1 While conditions imposed on ¢ and g(t,y,z) in Theorem 3.1 seem restrictive in
applications, the approach put forward can also be applied to other situations where the regularity
on the driver g(t,y, z) is not available for applying Theorem 3.1 directly. These instances, however,
must be treated on a case-by-case basis (see, e.g., Corollary 3.2).

Remark 3.2  Theorem 3.1, similarly, can be generalized to the following BSDE in high dimension,

T d T d
Vimo(Bh o B+ [ S kiZils— [ 3 ZiaB,
i=1 i1
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where o(x1,--+ ,xq) is symmetric with respect to ©1 =c1,--+ ,xq = cq.
Theorem 3.1 can also be stated as the following “non-vanishing theorem,” which relates to the

nodal sets of (Z;).

Theorem 3.2 ( “Non-vanishing Theorem”) Suppose (Yi, Z;) is the unique solution pair of
BSDE (2.2), where g and ¢ are under the same conditions of Theorem 8.1. Then Z # 0 with
respect to the product measure dt @ dP.

Proof Since {B # ¢} almost surely with respect to dt ® dP, the conclusion is a direct
consequence of Theorem 3.1 as {Z # 0} = {B # ¢} almost surely. O

In order to prove Theorem 3.1, we first show a lemma.

Lemma 3.1 Let g € C’l}’S(RJr x R?) satisfy (A.1). Assume that ¢ € C3(R) and the derivatives
0@ (where i =0,1,2,3 ) have at most polynomial growth.

(1) Let wu(t,x) be the unique solution of Cauchy’s initial problem of the parabolic equation
1
Ou = §8§zu +g(t,u,0,u), in (0,7] x R,
u(0,z) = p(x).
Then Y; = u(T —t, B;) and Z; = 0,u(T —t, B;) are unique solutions of BSDE (2.2).
(2) If in addition ¢ satisfies (H.1), g(t,y,2) = g(t,y, —2) for any t € (0,7] and y,z € R,
then we have the following conclusions.

(i) Oyu(t,c) =0 for every t € (0,T].
(ii) w(t, ) := Oyu(t, x) is the unique solution to the initial value problem of the parabolic equation

(3.1)

1
Ow = §a§zw + 0.9(t,u,w) - Opw + Oyg(t,u,w) -w, in (0,T] xR,

(3.2)
w(0,z) = ¢'(z).
Moreover, w(t,c) =0 for ¢t € (0,T.
(iii) For fixed z € R and ¢ € (0,77, let
At :=0yg (t — s,u(t — s, X7),w(t —s,X7)),
bt = 0,9 (t —s,u(t — s, X2), w(t —s,X7T))
for 0 < s <t, where X? =z + B,. Define the stochastic exponential martingale
S 1 S
N, = exp {/ bydB, — 5/ bﬁ’tdr} , 0<s<t. (3.3)
0 0
Then
w(t,z) =E [tho’(Xf) el awdSI{KT}} (3.4)

for every t > 0, where 7 :=inf{s >0, X = c}.

Proof Since ¢ is a C3-function with polynomial growth and g € C*3, so by the theory of
parabolic equations of second order, PDE (3.1) possesses a unique solution u(¢,z) which belongs
to C13((0,T] x R), see, for example, [11].

By Ito’s formula, we know that Y; =w(T —t,B;), Z; = 0,u(T —t,B;) solve BSDE (2.2).
Then the conclusion of (1) follows directly from the uniqueness of the solution to BSDE (2.2).

Now, we prove (2). Since g(t,y,-) is symmetric about 0, one can verify that w(t,c—z) and
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u(t,x + ¢) are solutions to the parabolic equation
1
O = iaixv +g(t,v,0,v), in (0,T] x R, (3.5)

subject to initial value ¢(c —x) and ¢(c+ x), respectively. Since ¢ is symmetric about c¢, that
is, ¢(c — ) = ¢(c+ z), by the uniqueness of the initial value problem for the parabolic equation
(3.5) we can conclude that w(t,c+ x) =wu(t,c — ). This in turn yields that Ou(t,c+z) =
—0zu(t,c —x) for (t,z) € (0,7] x R. In particular, d,u(t,c) =0 for every t € (0,T]. We thus
prove (i).

(ii) follows immediately by differentiating the parabolic equation (3.1) in .

(iii) Under assumptions on ¢(¢,y,2), as; and bs; are bounded processes for 0 < s <t <T.
Since ¢ € C® and @ (i=0,1,2,3) have at most polynomial growth, the unique strong
solution u(t,z) to problem (3.1) belongs to C1:3((0,7T] x R). In particular, we have that w(t,z) €
C12((0,T) x R).

Let us first consider the case where || < C (i =0,1,2,3). We know in this case the second-
order derivative of u(t,x) is bounded uniformly, that is, |0, w(t,z)| < C for (0,T] x R.

For any fixed 0 <t <T, define ¢(s) by solving the ordinary differential equation

dq(s) = asq(s)ds, ¢(0) =1.

Then ¢(s) is a bounded process which has finite variation. Let N, be the solution to the

following SDE:
dNs = Ngbs 1 dBs, Ny =1.

Then N is the stochastic exponential of fo by ¢dB,, where (bs;)s<; is a bounded process (while
its bound may depend on t ).
Denote M, := q(s)Nsw(t — s, X7¥), where 0 < s <t. By Ito’s formula we have
dM = q(s)d [Nsw(t — s, XT)] + Nsw(t — s, X7 )as,1q(s)ds
= q(s)Nsbs qw(t — s, X7)dBs + q(s)N - dw(t — s, X7)
+ q(s)Nsbs 1 0pw(t — s, X7)ds + q(s)Nsas qw(t — s, X7 )ds. (3.6)
Since w(t,x) solves (3.2),

dw(t — s, X7)

1
= (—8Sw(t —-5,X) + iaiww(t — s, Xf)) ds + O, w(t — s, X5)d By
=(—asw(t — s, X7) — bs 1 Opw(t — s, XT))ds + O,w(t — s, X7 )dBs. (3.7)

Substituting (3.7) into (3.6), we obtain that
dM = q(s)Ns [Ozw(t — s, X7 ) + bs yw(t — s, XZ)] dBs.

We claim that M is a square-integrable martingale. In fact, we have
lg(s)Ns [Opw(t — s, X7) + bs yw(t — s, XT)]| < C1N;

for some positive constant C; depending on ¢ but not on s <t¢. Moreover,

E[|IN,*] =E {exp (2/0 b+dB, 7/0 bm|2dr>}
s t
< CLE [exp (2 / b.+dB, — 2 / b,«,t|2dr>}
0 0

= (Cy < 00,
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where C5 is a positive constant. Therefore,
2

E[|M*] =E <M0 + /0 [g(s)NsOpw(t — s, XT) + b yw(t — s, X7)] dBS)

¢ 2
<Cp+2E (/ [q(s)NsOpw(t — s, XZF) + bs qw(t — s, X7)] dBS>
0

t i
< Cy + 2C3E </ N3d5> =Ch+ 20%/ E(N2)ds < oo,
0 0

which implies that (M) is a square-integrable martingale up to time ¢.
Setting
T:=inf{s >0, X7 =c} =inf{s >0, By =c—z},

then 7 is a stopping time and finite almost surely by (2.6) in [12]. According to the stopping
theorem for martingales, we have E (M) = E (Mn,). Then

w(t,z) =E (gt AT)Neprw(t —t AT, X[0))
—E [Nt<p’(Xf)ef3 aredr, I{t<7}} +E [g(r)Nyw(t — 7, X7) - Iir<y]
=E [Ntw’(Xf)efJ e f{t<7}} )
where in the last equality we apply w(s,¢) =0 for all s € (0,7

A simple approximation procedure allows us to validate the representation for the case where
©® (i=0,1,2,3) possess polynomial growth. The proof is complete. O

Remark 3.3 The representation (8.4) is basically Feynman¥Kac’s formula for the stopped
Brownian motion (killed at hitting the level ¢ ), together with the Cameron—Martin formula, see
Pinsky [20] for more information.

Remark 3.4 From the proof of Lemma 3.1, we can see that (H.1) is not mandatory and we
only need that there is a constant ¢ € R such that w(t,c) =0 and ¢ is monotone on [c,o0).
The symmetric function in (H.1) naturally satisfies the condition w(t,c) = 0.

Remark 3.5 The BSDE (1.2) is associated with the parabolic equation
1
Oru = iamu +g(t,u,0u), u(0,x)=p(x). (3.8)
The study of the sign of Zy is actually equivalent to the study the nodal set of Oyu. It has a
connection to the work of Qian and Xu (2018). For more details, see [21].
Now, we begin to prove Theorem 3.1. The proof is in a routine by Lemma 3.1.
Proof of Theorem 3.1 By Lemma 3.1, Z, = w(T —t, B;) and
w(t, ) = E [N (Xp)eli 0085 - Iy | (3.9)
which allows us to determine the sign of w(t,x) accordingly.

Note that when x> ¢, it holds that X7 >c¢ on {t <7}. It is obvious that N; >0 for
t € (0,T). Thus, if ¢'(z) >0 and ¢'(z) Z0 for all > ¢, we have

P (tho’(Xf)I{KT} >0) >0,

which, combined with (3.9), indicates that w(t,z) >0 for z > c. Since ¢(z) is symmetric
about x = ¢, we can obtain in the same way that w(t,z) <0 for x < c. Thus, due to that



290 Zengjing Chen, Shuhuwi Liu, Zhongmin Qian, Xingcheng Xu

Zy = w(T —t, By), we have
sgn(Z;) = sgn(B; — ¢).

Similarly, if ¢/'(z) <0 and ¢'(x) £ 0 for all x > ¢, we have sgn(Z;) = —sgn(B; — ¢).
The proof of Theorem 3.1 is completed. d

In the following, we analyze the sign of (Z;) for the special and important nonlinear BSDE
(1.2). Recall that the driver in BSDE (1.2) is g(z) = k|z|, which is nonlinear and Lipschitz
continuous in z. Thus, it has a unique solution pair (Y, Z) according to Pardoux—Peng [17].
However, we cannot apply the nonlinear Feynman¥ac formula directly because g¢(z) = k|z]
does not satisfy the derivative conditions in Peng [18]. Thus, the method in Theorem 3.1 cannot
be applied to BSDE (1.2) directly. Moreover, the solution u(t,z) to the corresponding parabolic
equation is only C'*, but not C? in the variable x. Therefore, the first step is to derive a
nonlinear Feynman-Kac-type formula for this case, and generalize the results in Theorem 3.1
and Lemma 3.1 to BSDE (1.2).

Theorem 3.3 Let ¢ € C3(R) satisfy (H.1) with some constant c, such that ¢ and ¢’ have at
most polynomial growth, and let u be the unique weak solution to the nonlinear parabolic equation

Opu = %@%Iu + k|0 ul,
w(0,2) = ¢(x).

(3.10)

Then Oyu(t,x) is Hélder continuous in any compact subset of (0,00) x R; and for every (t,x) €
(0,00) x R, it holds that

Opu(t,z) =E [Ny (Bi + 2) - Ityery] (3.11)

where

s 2
N, = exp [k/ sgn(w(t —r, B, + x))dB, — —s
0

is a martingale for 0 < s <t, T=inf{s >0: Bs+ 2 = ¢}, and w(t,x) = O,u(t,x) is the unique
weak solution to the following parabolic equation

Ow = %azﬂcw + k- sgn(w(t, x)) - Ow,

w(0,2) = ¢'(x).

(3.12)

Moreover, Yy = u(T —t,B;) and Zy = w(T —t,B;) is the unique solution pair to BSDE (1.2).

Proof According to the theory of parabolic equations (see section 1, Chapter V in[15], or
Theorem 10 on page 72 in [11]), there is a unique weak solution wu(t,z) to the problem (3.10)
and O,u(t,z) is Holder continuous on any compact subset of (0,7) x R. By the following
Lemma 3.2, the linear parabolic equation (3.12) has a unique weak solution which is Holder
continuous in any compact set of (0,7) x R.

Next, we prove that Y; =u(T —¢,B,) and Z; = w(T —t, B;) are unique solutions of BSDE
(1.2). To this end, let g.(z) = kv/2%2 + & for € > 0. Then, g. is smooth and |g.(2) — go(z)| — 0

as € = 0 for every z € R. Moreover, g.(z) =k so that [g.(2)| < k.

z
Vz22 + e
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Since ¢ has at most polynomial growth, there exists a unique strong solution u®(¢,z) to the
problem
1
Opus(x,t) = §8§$u€(t,z) + g (0 us(t, x)),
us(z,0) = o(x),

for every &> 0. Due to the regularity theory of quasi-linear parabolic equations (see [15]),

(3.13)

us(t,x) € C1*°((0,00) x R), and its space derivative w®(t,z) := d,u°(t,x) is the unique weak
solution to the (linear) parabolic equation

O (t,x) = %agmwa(t,x) + gl(we(t,x)) - Opw=(t, ),
we(0,7) = ¢'(x).

By standard theory of parabolic equations,

(3.14)

u® —u, as € —0,

where u is the unique weak solution to the initial problem of the parabolic equation (3.10), that
is the case when € =0 for problem (3.13).

Note that g. are uniformly bounded by |k|, which is crucial in our argument below. By Nash’s
continuity theory (see [16]), solutions {w®(¢,z),e > 0} are uniformly Hélder continuous in any
compact subset of (0,00) x R, and bounded in L?([0,7], H..) (where H! is the usual Sobolev
space). Thus, we can extract a sequence ¢, | 0, such that w®"(¢,z) converges to w(t,z) point-
wise, uniform in any compact subset of (0,7T] x R, and w®" converges weakly to w in L?([0, T},
H} ). For a proof of this basic fact from the theory of parabolic equations, see Lemma 3.2 below.

Since w® is a strong solution to problem (3.14), we have for every p(x,t) with a compact
support in [0,7) x R,

/ 1 €
- [ o0 @ = =5 [ oot
R Rx[0,T)

R B PR ) R R )
Rx[0,T)
Letting € — 0, we therefore obtain that
1
- [ o0 @ = =5 [ oplatou)
R 2 Jrx[0,T)
# [ platksgnu(t, ) - dsu(t.o)
Rx[0,T)

which implies w(¢,x) is the unique weak solution to the problem (3.12).
For every n, according to It6’s formula

T T
Y = o(Br) + / 9e, (Z57)ds — / Z:"dBs, (3.15)
¢ t

where Z;"» = w (T —t,B.) and Y™ = u*(T —t, B). Since w*(T —t,B.) » w(T —t,B.) and
u™ (T —t,By) = u(T —t,B;) as n — oo, we have that Y; = u(T —t,B;) and Z; = w(T —t, By)
are unique solutions to BSDEs:

T T
Y: = ¢(Br) —|—/ k|Zs|ds — / Z,dB, for 0<¢t<T.
t t

Since ¢ € C*(R) has polynomial growth, we can apply Lemma 3.1 to uf(t,z). Thus, for each
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e >0, w(t,c) =0 forall t>0 and
we(t,x) = E [Nf /(B + ) - I1ieny] (3.16)

where 7 =inf{s > 0: B; +x = ¢} and

¢ 1t
Nf = exp [/ gr(w®(t — s, Bs + x))dBs — 5/ |gL(w® (t — s, Bs + z))|*ds| .
0 0

According to the Lebesgue’s dominated convergence theorem,
E [Ni"¢ (B + @) - Ipary] = E [N/ (Be + 2) - Ijpary ]
as n — oo. Thus, we conclude that
w(t, ) =E [Ny (B + ) - Ijery] -

The proof is complete. 0

In the proof of Theorem 3.3, we use a basic result about parabolic equations. For completeness
we provide a proof in the following lemma.

Lemma 3.2 The linear parabolic equation (3.12) has a unique weak solution which is Holder
continuous in any compact set of (0,7) x R.

Proof We extract a sequence &, | 0, so that w®"(t,z) — w(t,x) as n — oo, where w(t,z) is
the unique weak solution to the problem (3.12).

For simplicity, define b, (¢, ) := g.(0,u°(t,z)) for every € > 0, and by(t,z) := k - sgn(Ou(t, x)).
Then |b(t,z)| < |k|, which means that |b.(¢,2)| has a bound independent of e. According to
Nash [16] and Aronson [1], the fundamental solution p.(s,z,t,y) to the parabolic equation

(81& - %ax:c - bs(tax)ax> v=0 in (07 OO) xR (317)

is jointly a-Holder continuous for some « depending only on |k| (see page 328 in Friedman [11]
or Nash [16]), and p.(s,z,t,y) has a Gaussian lower and upper bounds uniformly in e > 0, for
0<s<t<T, z,y € R. Thisimplies that p(s,z,t,y) is a-Holder continuous in all its arguments,
where a and the Holder constant are independent of & > 0. By Aronson [1], the unique weak
solution w®(¢,z) to the problem (3.14) (for all € > 0) has the representation

we(t,r) = /Rpa(O, z,t,y)¢ (y)dy. (3.18)

Note that {p.(s,z,t,y),e > 0} is a family of equi-continuous functions on any compact set of
0<s<t and z,y € R. Hence, by extracting a sequence ¢, such that p., (s,z,t,y) converges
to p(s,z,t,y) uniformly on any compact subset of {0 < s <t} x R2. Therefore,

w (t, ) = w(t,x) uniformly on any compact subset of (0,00) x R.
Thus, we conclude that p(s,x,t,y) = po(s,z,t,y) and w(t,z) = wo(t, ). O
Thanks to Theorem 3.3, we can determine the sign of (Z;) for BSDE (1.2) quantitatively.

Corollary 3.1 Suppose that ¢ € C3(R) satisfies (H.1) with some constant c, such that (¢, ¢')
has at most polynomial growth. Let (Y, Z;) be the unique solution pair of the BSDE (1.2).

(1) If ¢'(x) >0 and ¢'(z) Z0 for all x > ¢, then
sgn(Z;) =sgn(By —¢), t >0 almost surely.
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(2) If () <0 and ¢'(x) Z0 for all x> c, then
sgn(—2Z;) = sgn(Bt — ¢), t >0 almost surely.
Proof Similar to the proof of Theorem 3.1, the conclusion follows from Theorem 3.3 directly.
O
3.2 Explicit solutions for some BSDEs

Here, we show that Corollary 3.1 allows us to work out the explicit solution of BSDE (1.2),
especially when ¢ = Ij,4(Br) for any two finite constants a,b. To this end, a key technique
that we use in the proof is the joint distribution P(B; € dx, LY € dy) of B; and its local time
LY with respect to ¢ given by

P(B; € dz, L} € dy)

! —(y+ | — 1] + |¢])?
B \/W(y+m_£|+|€|)e’(p{ As 57 [+ }'I{y>0}dxdy
1 _'1;2 x_z + K 2
+ Vo [exp{—%} —exp{—(2|t||)}:| I y—gydady, (3.19)

(see [3], for example).

Theorem 3.4 Suppose that ¢ € C3(R) satisfies (H.1) and (¢, ¢’ ) has at most polynomial
growth. Then the unique solution pair of BSDE (1.2) is given by

Y, =H(B:), Z;=0rH(By), (3.20)
where H(h) is defined in the following.
(i) If ¢’ >0 and ¢ Z0 on (c,00), then
H(h) = e~ 2¥(T=0) x
{/ / o(x + h)eklz—cthi=kle=hl=ky . p(Br. , ¢ dz, L5 " € dy)}. (3.21)
R Jy>0
(i) If ¢’ <0 and ¢ Z0 on (c,00), then
H(h) = e 2F(T-0)x

{/]R />0 cp(x + h)e—klx—c-‘rh\-‘rk\c—thy . P(BTft S d$7L§fj§ c dy)} . (3.22)
Y=

Proof (i) Since ¢’ >0 and ¢’ Z0 on (¢, 00), we have sgn(Z;) =sgn(B; —¢) by Corollary
3.1. Then BSDE (1.2) can be rewritten as linear BSDEs in Z
T T
Y: = o(Br) + k/ sgn(Bs — ¢)Zsds — / Z,dBsy.
t t
By Girsanov’s theorem, Y; is given by

Y, =E |:SD(BT) . e—%k2(T—t)+k ftT sgn(Bs—c)dBs

.7-}] . (3.23)
According to Tanaka’s formula, we have

T
/ sgn(Bs — ¢)dBs = |Br — ¢| — |¢| = LS.
0
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Then, when ¢ =0, Y; in (3.23) can be solved by
Yo =Ep [QD(BT)e_%kZT““ J5 Sgn(BS_C)dBS}
—Ep {QO(BT) . e—%k2T+k<|BT—c\—\c|—L;)}
_ ef%sz/ / o) exp [kl — ¢ — kle| — ky} - P(Br € dz, L € dy). (3.24)
R Jy>0
Therefore, Y; is given by

Y, = ¢ 3 (T / / o(x + h)exp{klr —c+ h| — k|le — h| — ky} x
R Jy>0

P(Br_; € da, L5, € dy)|n=p,
= H(Bt)

Then by Theorem 3.3, we have Z; = 9, H(By).
(ii) Similarly, if ¢’ <0 and ¢’ #Z 0 on (¢, 00), by Corollary 3.1 we have sgn(Z;) = —sgn(B; — ¢).
The rest can be proved in a similar manner as for (i). The proof is completed. O

Thanks to Theorem 3.4, we are able to work out a closed-form of solutions (Y, Z;) to the
following BSDE,

T T
Y, = I[a,b)(BT) + / k| Zs|ds — / ZsdBg, (3.25)
t t

where a,b are finite constants.

Corollary 3.2 Let ® be the cumulative distribution function of standard mormal distribution.

b
Set ¢ := % for any a,b € (—o0,00). Then the explicit solutions of BSDE (3.25) are given as:

By —c| — k(T —t) — =2
n:q)(_m o —K(T 1) )

T—t
By —c| — k(T —t) + =2
- e_k(b_a) . @ <_| i | jg — t ) 2 ) 9 (3.26)
and
—e|—k(T—t)—b2z2)2 t—c|—k(T—t)+ 25212
Zi = _ngn((?t _tc)) {G[Bt S mh(b—a) gy } (3.27)
(T —

Proof For any € > 0, let us set

() = E[Ij4 ) (z + VEE)] = /:X) a0 (v)\/%exp {_(U;;)} dv,

where ¢ is a standard normal distribution under probability measure P. Then ¢, € C*(R)
and @ (x) = I3 (7) as € = 0.
Consider the following BSDE

T T
Y = o(Br) +/ k| Z|ds — / Z.dB,.
t t
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Since ¢.(z) € C*(R), by Theorem 3.4 we know Y, is given by
}/ts _ €ék2(Tt){ / / <Pe($ + h)ek|x7c+h\7k\c7h|fkyx
RJy>0

P (Br_; € de, LS, € dy) }

h=B

=: He(h)|p=p,
h=B,

—0o0

g VT {/Oo we(x+h)- f(e, h,m)dx]

where
fle,h,z) = / exp{—klx —c+ h| + klc — h| + ky} fi(c, b, z,y)dy + fa(c, b, x).
0

In the above equation, f; and fy; are given by

y+le—(c=h)[+|c—hl [ (y+fv—(c—h)l+|c—h|)2]
c,h,xz,y) = exp |— ,
I v) 2n(T — t)3 Y 2T -1
and
eklemeththlehl (s <|x—<c—h>|+|c—h'>2}}
c,h,x) = e 2T —exp |— .
fale:h.) o (T — 1) { p[ 2T — 1)
Now, we prove that
H.(h) — H(h) as &—0,
where
H( = & e KT —t) - 5o kg = k(T 1) + 25
Tt Tt ‘

Actually, we have
H(h) = e§k2(Tt){ / / I[a,b) (x + h)ek|x—c+h\7k\c,h|,kyx
R Jy>0

P(Br_; €dx, L5 € dy)}

— e 3kH(T-1) [/ Iapy(z+h) - f(c, h,x)dx] )

By Lebesgue’s dominated convergence theorem, H.(h) converges to H(h) as ¢ — 0, which
means that H.(B;) converges to H(B;) almost surely. Therefore,

Yy = H(B)

_® CBe—e — k(T 1) - 50 kg B = = R(T 1)+ 252
T4 T—t '

According to El Karoui, Peng, and Quenez [17, Corollary 4.1], we have Z; = 0, H(By). Thus, Z;
is given by (3.27), from which it is not hard to see that
sgn(Z;) = —sgn(B; — ¢),
which means Theorem 3.1 also holds for indicator function.
The proof is complete. O
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Remark 3.6 We point out that Corollary 3.2 is also applicable when a = —oco or b= 4o0. For

b
example, & = I{p,.<p) if a = —o0o. Then ¢ = % = —o0 forany b € R. By Theorem 3.3, sgn(Z;)

= —sgn(B; — ¢) = —1, which implies that Zy <0 for t €[0,T]. Thus, BSDE (3.25) becomes a
linear BSDE in this case:

T T
Y}/ = I{BTSb} —/ kZSdS —/ stBs-
t t

By Girsanov’s formula and the relation between Y; and Zy, we can obtain the explicit solutions easily.

Remark 3.7 We plot one sample path of Brownian motion B; and the solution Z; of
Corollary 3.2 in Figure 1, in which the blue line is By and the red is Z;. We can see the
relationship of the sign between By — ¢ and Z; intuitively in this figure.

0.50

0.25

L/\M:’\,L M\/\ AJ’\A L; .
Y \/W

-0.50

S

-0.75
-1.00 I "
-125

-1.50 1

0.‘0 0.‘2 0?4 0.‘6 0:8

Figure 1  Brownian motion Bj (blue) and solution Z; (red) (a =0, b=1, k=0.1, T =0.9)

4. Applications

In this section, as an application of Theorem 3.4, we give two examples of explicit solutions.
One is BSDE (1.2) when ¢(x) = 22, the other is the following PDE:

Opu(t,x) = 1(fﬁwu(t, x) + k- sgn(x)du(t, x), (w1)

lim u(t,z) = 2.

t—0t

Additionally, we apply the explicit solution of BSDE (3.25) in Corollary 3.2 to the contingent
pricing in an incomplete market.

4.1 Applications to BSDEs and PDE

Example 4.1 The explicit solution pair (Y, Z:) of BSDE
T T
Y, = B2 + k/ |Z|ds — / Z,dBs, (4.2)
t t

18 given by
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Yt=211€2+\/T7{|Bt|+k( }exp{
+{[|Bt+k(T—t)]2+(T ka} ('Bt”k >>

(1Bt +k —t))?
S

+672’€‘Bt|(|Bt|+T7t7#)¢ <|Bt|T(_tt)) (4.3)
and
T_—¢ [|Be| + k(T — t)]?
2=\ Tyt sn() e { IO

‘ {1+ [|Bt|+k<T_t>+H . {_W”

+ 2sgn(By) - [|By| + k(T —t)] - @ (|Bt|+k(Tt_t)>

T —
sgn(B;) [Be| + K(T - )]
e )eXp{_ 2(T —t) }
><{[|Bt|+k(T—t)]2—k:(T—t)—2]162}
+ e 2MBilsgn(B,)® (—B” _;(_Tt_ t)) [—2kz (|Bt| +T—t— 2;) + 1]
_ 2klB o LN sen(By) (B - k(T 1))
o ('BtHT ! 2k2) 27 (T — 1) p{ 2T -1 } -y

Proof By Theorem 3.4,

Y, =e W(Tt){ // (z + h)2eFlethi=khl=ky . p(By € da, L, € dy)}
R >0

h=B,
By an elementary calculation, we have
Y; = % + \/T {lBtl k(T —t) + H eXp{ _ HBt|2+(71j(Tt)— t))? }
+ {[|Bt BT - )P+ (T — 1) — 2/162}‘1’ (W)
b BB T — 1~ )b <_|Bt|—T’f<_Tt—t))_ (5)

Therefore, by Theorem 3.3, we have Z; = 0, H(B;). Thus, we obtain Z; as equation (4.4). The
proof is completed. O

It is interesting that our result can be used to get the explicit solution of PDE (4.1), its
application can be found in [12] for k = —1.

Example 4.2 The unique weak solution to the initial problem of parabolic equation (4.1) is
given by



298 Zengjing Chen, Shuhuwi Liu, Zhongmin Qian, Xingcheng Xu

1 [t 1 (|| + kt)?
u(t,x) = 552 + 27T(|alc| + kt + k)exp{ 5

+ {(Ix| + k) 4t — 21]#}4) <x|\2kt)
1

—2ka| bz =kt
+e (|| +T -t 2k2)<1>< 7 .

The explicit solution agrees with the result of [12] (see Exercise 5.3 on Page 441) when k = —1.

Proof By Theorem 3.3, (Yi, Z;) = (u(T —t, By), 0,u(T —t, By)) is the unique solution to the
BSDE

T T
Yt:B%+k/ |Zs|ds—/ Z,dB;.
t t

By Theorem 3.1, sgn(B;) =sgn(Z;) for ¢(z) =22 Hence the expression for wu(t,z) follows
from (4.3) immediately. O

4.2 Robust prices in incomplete markets

The Black-Scholes model studied by Black and Scholes (1973), Merton (1973, 1991) is the
most celebrated example of option pricing and hedging in a complete market using no-arbitrage
theory and martingale methods. According to this theory, when a stock obeys the geometric
Brownian motion

dSt = /Lstdt + O'StdBt, SO = ]., (46)

there exists a unique risk-neutral martingale measure @ such that the price of the contingent
claim ¢ at time T is given by Eg[ée~"T], where
dQ

- eJo (H5E)ABa—§ [T (#55)%ds (4.7)

Fr

where r is the interest rate of a bond. Therefore, for £ = I1,<g,<p}, the price of the contingent
claim ¢ is given by

Eq (6-T) = T {q) <1nb -~ (QMJ_\/TT_ 0.502)T> e <1na - (2MU—\/TT— 0.502)T>} 48

In an incomplete market, the incompleteness of the market usually gives rise to infinitely

many martingale measures, therefore upper and lower pricing was studied by El Karoui and
Quenez (1995) [9] and El Karoui and Peng (1997) [10]. They use min-max pricing to show that
the pricing of an insurance or contingent claim equals the maximal (minimal) expectations with
respect to a set of martingale measures. Chen and Epstein (2002) studied ambiguity pricing
under a set of measures P, where

dQ ¢ T,
P=1:Q: ip|. =P / 0sdB;s — 5/ Oids|, sup |05 <kp. (4.9)
T 0 0 s€[0,T7]

Set
y, = ess inf Eg[¢|F;] and Y, = esssupEqg[¢|F]. (4.10)
QeP QeP

It is known that y; and Y; are, respectively, the minimum and maximum price of £ in an
incomplete market.
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Chen and Epstein (2002)[5] have shown that there exists an adapted z; such that Y; and
are expressed as

T T
Ye =& — k/ |2s|ds —/ zsd B (4.11)
t t
and
T T
Yi=¢+ kz/ |zs|ds — / z5d Bs. (4.12)
t t

Using our results from the previous sections, we give the explicit representation of the wealth
Y; when the stock price S; obeys the geometric Brownian motion

S = exp {(u - 202)15 + aBt] (4.13)

and f = I{U«SSTSb}'
In fact, when & = Ij4<g,<p}, that is,

6 = I{ lha—(u—0.502)T <BT<1nb—(u—0.502)T}~ (414)
In(ab —0.503)T
According to the calculation in Corollary 3.2, with ¢ = n;a ) — (1 = 0507) , we have the
o o

upper pricing, which is given by

In(b/a In (b/a
By = = k(T —t) - 2 et (O [Bi—d k(T 1)+ G . (4.15)
T _¢ T—t

;=@

and the lower pricing is given by

In (b/a) In (b/a)
IBi e A R(T 1) - BT wose f|Br— e HR(T 1) 25 (4.16)
T—1t T-t

yr =@
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